Concept explainers
A projectile is launched from the point (x = 0, y = 0), with velocity
(a)
The values of the projectile distance
Answer to Problem 44AP
The table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Explanation of Solution
The initial position of the projectile is
The value of the acceleration due to gravity is
Write the formula to calculate the
Here,
In a vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the
Here,
For the vertical projectile the acceleration in
Substitute
Thus, the
Write the formula to calculate the magnitude of the position vector
Substitute
For
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
Conclusion:
Therefore, the table for the values of
0 | 0 |
1 | 45.7 |
2 | 82.0 |
3 | 109 |
4 | 127 |
5 | 136 |
6 | 138 |
7 | 133 |
8 | 124 |
9 | 117 |
10 | 120 |
(b)
The distance is maximum when the position vector is perpendicular to the velocity.
Answer to Problem 44AP
The distance is maximum when the position vector is perpendicular to the velocity.
Explanation of Solution
The initial position of the projectile is
The velocity vector tells about the change in the position vector. If the velocity vector at particular point has a component along the position vector and the velocity vector makes an angle less than
For the position vector to be maximum the distance from the origin must be momentarily at rest or constant and the only possible situation for this is that the velocity vector makes an angle
Conclusion:
Therefore, the distance is maximum when the position vector is perpendicular to the velocity vector.
(c)
The magnitude of the maximum displacement.
Answer to Problem 44AP
The magnitude of the maximum displacement is
Explanation of Solution
The initial position of the projectile is
The expression for the position vector
Square both the sides of the above equation.
Differentiate the above expression with respect to
For the maxima condition to calculate the value the value of
Further solve the above expression for
Further solving the above quadratic equation the values of
From the table in Part (a) it is evident that after
Thus, the maximum value of
Substitute
Conclusion:
Therefore, the maximum distance is
(d)
The explanation for the method used in part (c) calculation.
Answer to Problem 44AP
The maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Explanation of Solution
The initial position of the projectile is
The maximum or minimum value of any function is easily calculated using the Maxima and Minima condition.
For the part (c) first calculate the critical points by equating the differential of
The value of
Substitute the maximum value of
Conclusion:
Therefore, the maxima and minima condition is used to calculate the maximum magnitude of the position vector.
Want to see more full solutions like this?
Chapter 4 Solutions
Physics for Scientists and Engineers
- the answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forward
- Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward
- 1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forwardNo chatgpt pls will upvotearrow_forward
- the cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning