![PHYSICS:F/SCI.+ENGRS.(LL)-W/WEBASSIGN](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337888714/9781337888714_smallCoverImage.gif)
Concept explainers
A spring cannon is located at the edge of a table that is 1.20 m above the floor. A steel ball is launched from the cannon with speed vi at 35.0° above the horizontal. (a) Find the horizontal position of the ball as a function of vi at the instant it lands on the floor. We write this function as x(vi). Evaluate x for (b) vi = 0.100 m/s and for (c) vi = 100 m/s. (d) Assume vi is close to but not equal to zero. Show that one term in the answer to part (a) dominates so that the function x(vi) reduces to a simpler form. (c) If vi is very large, what is the approximate form of x(v)? (f) Describe the overall shape of the graph of the function x(vi).
(a)
![Check Mark](/static/check-mark.png)
The ball’s horizontal position as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
The location of the spring cannon is
Write the formula to calculate the vertical distance covered by the ball
Here,
Write the formula to vertical component of the velocity
Here,
Substitute
Substitute
Solve the equation (II).
Write the formula to calculate the horizontal distance covered by the ball
Here,
Write the expression for the horizontal component of the velocity
Substitute
Conclusion:
Substitute
Therefore, the horizontal position of the ball as a function of
(b)
![Check Mark](/static/check-mark.png)
The horizontal position of the ball with
Answer to Problem 43AP
The horizontal position the ball with
Explanation of Solution
From equation (IV),
Substitute
Conclusion:
Therefore, the horizontal position the ball as
(c)
![Check Mark](/static/check-mark.png)
The horizontal position of the ball with
Answer to Problem 43AP
The horizontal position the ball with
Explanation of Solution
From equation (IV),
Conclusion:
Substitute
Therefore, the horizontal position the ball as
(d)
![Check Mark](/static/check-mark.png)
The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
The located at the spring cannon is
From equation (IV),
The value of
Conclusion:
Substitute
Therefore, the horizontal position of the ball as a function of
(e)
![Check Mark](/static/check-mark.png)
The horizontal position of the ball as a function of
Answer to Problem 43AP
The horizontal position of the ball as a function of
Explanation of Solution
The located at the spring cannon is
From equation (4),
Conclusion:
The term is
Therefore, the horizontal position of the ball as a function of
(f)
![Check Mark](/static/check-mark.png)
The overall shape of the graph of position as a function of velocity.
Answer to Problem 43AP
The starting condition graph
Explanation of Solution
From the approximation in part (d), it follows that the position curve is a straight line with slope
Conclusion:
Therefore, the starting condition graph
Want to see more full solutions like this?
Chapter 4 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/WEBASSIGN
- A point charge of -4.00 nC is at the origin, and a second point charge of 6.00 nC is on the x axis at x= 0.820 mm . Find the magnitude and direction of the electric field at each of the following points on the x axis. x2 = 19.0 cmarrow_forwardFour point-like charges are placed as shown in the figure, three of them are at the corners and one at the center of a square, 36.0 cm on each side. What is the electric potential at the empty corner? Let q1=q3=+26.0 µС, q2=-28.0 μC, and q4=-48.0μc Varrow_forwardPLS HELparrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)