University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.36P
CP An advertisement claims that a particular automobile can “stop on a dime.” What net force would be necessary to stop a 850-kg automobile traveling initially at 45.0 km/h in a distance equal to the diameter of a dime. 1.8 cm?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An advertisement claims that a particular automobile can “stop on a dime.” What net force would be necessary to stop a 850 kg automobile traveling initially at 45.0 km/h in a distance equal to the diameter of a dime, 1.8 cm?
A dockworker applies a constant horizontal force of 80.0N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves 20.0 m in the first 9.00 s. What is the mass of the block of ice?
A 1400-kg car is brought from 25 m/s to 10 m/s over a time period of 5.0 seconds. Determine the force experienced by the car.
Chapter 4 Solutions
University Physics (14th Edition)
Ch. 4 - Can a body be in equilibrium when only one force...Ch. 4 - A ball thrown straight up has zero velocity at its...Ch. 4 - A helium balloon hovers in midair, neither...Ch. 4 - When you fly in an airplane at night in smooth...Ch. 4 - If the two ends of a rope in equilibrium are...Ch. 4 - You tie a brick lo the end of a rope and whirl the...Ch. 4 - When a car stops suddenly, the passengers tend to...Ch. 4 - Some people say that the force of inertia (or...Ch. 4 - A passenger in a moving bus with no windows...Ch. 4 - Suppose you chose the fundamental physical...
Ch. 4 - Why is the earth only approximately an inertial...Ch. 4 - Does Newtons second law hold true for an observer...Ch. 4 - Some students refer to the quantity ma as the...Ch. 4 - The acceleration of a falling body is measured in...Ch. 4 - You can play catch with a softball in a bus moving...Ch. 4 - Students sometimes say that the force of gravity...Ch. 4 - Why can it hurt your foot more to kick a big rock...Ch. 4 - Its not the fall that hurts you; its the sudden...Ch. 4 - A person can dive into water from a height of 10 m...Ch. 4 - Why are cars designed to crumple in front and back...Ch. 4 - When a string barely strong enough lifts a heavy...Ch. 4 - A large crate is suspended from the end of a...Ch. 4 - Which feels a greater pull due to the earths...Ch. 4 - Why is it incorrect to say that 1.0 kg equals 2.2...Ch. 4 - A horse is hitched to a wagon. Since the wagon...Ch. 4 - True or false? You exert a push P on an object and...Ch. 4 - A large truck and a small compact car have a...Ch. 4 - When a car comes to a stop on a level highway,...Ch. 4 - A small compact car is pushing a large van that...Ch. 4 - Consider a tug-of-war between two people who pull...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A manual for student pilots contains this passage:...Ch. 4 - If your hands are wet and no towel is handy, you...Ch. 4 - If you squat down (such as when you examine the...Ch. 4 - When a car is hit from behind, the occupants may...Ch. 4 - In a head-on auto collision, passengers who are...Ch. 4 - In a head-on collision between a compact 1000-kg...Ch. 4 - Suppose you are in a rocket with no windows,...Ch. 4 - Two dogs pull horizontally on ropes attached to a...Ch. 4 - To extricate an SUV stuck in the mud, workmen use...Ch. 4 - BIO Jaw Injury. Due to a jaw injury, a patient...Ch. 4 - A man is dragging a trunk up the loading ramp of a...Ch. 4 - Forces F1 and F2act at a point. The magnitude of...Ch. 4 - An electron (mass = 9.11 1031 kg) leaves one end...Ch. 4 - A 68.5-kg skater moving initially at 2.40 m/s on...Ch. 4 - You walk into an elevator, step onto a scale, and...Ch. 4 - A box rests on a frozen pond, which serves as a...Ch. 4 - A dockworker applies a constant horizontal force...Ch. 4 - A hockey puck with mass 0.160 kg is at rest at the...Ch. 4 - A crate with mass 32.5 kg initially at rest on a...Ch. 4 - A 4.50-kg experimental cart undergoes an...Ch. 4 - A 2.75-kg cat moves in a straight line (the...Ch. 4 - A small 8.00-kg rocket burns fuel that exerts a...Ch. 4 - An astronauts pack weighs 17.5 N when she is on...Ch. 4 - Superman throws a 2400-N boulder at an adversary....Ch. 4 - BIO (a) An ordinary flea has a mass of 210 g. How...Ch. 4 - At the surface of Jupiters moon Io, the...Ch. 4 - A small car of mass 380 kg is pushing a large...Ch. 4 - BIO World-class sprinters can accelerate out of...Ch. 4 - The upward normal force exerted by the floor is...Ch. 4 - Boxes A and B are in contact on a horizontal,...Ch. 4 - A student of mass 45 kg jumps off a high diving...Ch. 4 - Section 4.6 Free-Body Diagrams 4.25Crates A and B...Ch. 4 - You pull horizontally on block B in Fig. F4.26,...Ch. 4 - A ball is hanging from a long siring that is tied...Ch. 4 - CP A .22-caliber rifle bullet traveling at 350 m/s...Ch. 4 - A chair of mass 12.0 kg is sitting on the...Ch. 4 - A large box containing your new computer sits on...Ch. 4 - CP A 5.60-kg bucket of water is accelerated upward...Ch. 4 - CP You have just landed on Planet X. You release a...Ch. 4 - Two adults and a child want to push a wheeled cart...Ch. 4 - CP An oil tankers engines have broken down, and...Ch. 4 - CP BIO A Standing Vertical Jump. Basketball player...Ch. 4 - CP An advertisement claims that a particular...Ch. 4 - BIO Human Biomechanics. The fastest pitched...Ch. 4 - BIO Human Biomechanics. The fastest served tennis...Ch. 4 - Two crates, one with mass 4.00 kg and the other...Ch. 4 - CP Two blocks connected by a light horizontal rope...Ch. 4 - CALC To study damage to aircraft that collide with...Ch. 4 - CP A 6.50-kg instrument is hanging by a vertical...Ch. 4 - BIO Insect Dynamics. The froghopper (Philaenus...Ch. 4 - A loaded elevator with very worn cables has a...Ch. 4 - CP After an annual checkup, you leave your...Ch. 4 - CP A nail in a pine board stops a 4.9-N hammer...Ch. 4 - CP Jumping to the Ground. A 75.0-kg man steps off...Ch. 4 - The two blocks in Fig. P4.48 are connected by a...Ch. 4 - CP Boxes A and B are connected to each end of a...Ch. 4 - CP Extraterrestrial Physics. You have landed on an...Ch. 4 - CP CALC A mysterious rocket-propelled object of...Ch. 4 - CALC The position of a training helicopter (weight...Ch. 4 - DATA The table gives automobile performance data...Ch. 4 - DATA An 8.00-kg box sits on a level floor. You...Ch. 4 - DATA You are a Starfleet captain going boldly...Ch. 4 - Prob. 4.56CPCh. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCERS BODY. Dancers experience...Ch. 4 - BIO FORCES ON A DANCER'S BODY. Dancers experience...Ch. 4 - The forces on a dancer can be measured directly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
A tetherball on a 1.55-m rope is struck so that it goes into circular motion in a horizontal plane, with the ro...
Essential University Physics: Volume 1 (3rd Edition)
A satellite in elliptical orbit about Earth travels fastest when it a moves close to Earth. b moves far from Ea...
Conceptual Integrated Science
Influence on History. Based on what you have learned about the Copernican revolution, write a one- to two-page ...
Life in the Universe (4th Edition)
30. A 3000-rn-high mountain is located on the equator. How much faster does a climber on top of the mountain mo...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 2750 kg pile driver is used to drive a steelI-beam into the ground. The pile driver falls5.26 m before contacting the beam, and itdrives the beam 6.27 cm into the ground before coming to rest.Find the magnitude of the average force thebeam exerts on the pile driver while the piledriver is brought to rest. The acceleration ofgravity is 9.8 m/s2.Answer in units of N.arrow_forwardYou are entering the bungee-jumping business and must design the bungee cord. The jump will be from a bridge that is 100.0 m above a river. The design calls for 2.00 seconds of free fall before the cord begins to slow the fall, and the person just touches the water after jumping. Find the force con- stant and length of the bungee cord for a 100.0 kg person.arrow_forwardA 1250 kg boat is traveling at 90 km/h when its engine is shut off. The magnitude of the frictional force fk between boat and water is proportional to the speed v of the boat. Thus, fk = 80v, where v is in meters per second and fk (the magnitude of the frictional force) is in newtons. Find the time required for the boat to slow down to 45 km/h.arrow_forward
- The driver of a Bugatti Veyron experiences a force of magnitude 792 N while accelerating from rest to 125km/h in 6.30 s. What is the mass of the driver?arrow_forwardA tree trunk can be penetrated to a depth of 5.30 cm by a 7.80-g bullet traveling at 520 m/s. (a) Calculate the average frictional force required to stop the bullet. If the frictional force is constant, determine how long it takes for a bullet to cease moving once it has entered the tree.arrow_forwardA driver who does not wear a seatbelt continues to move forward with a speed of 18.0 m>s (due to inertia) until somethingsolid like the steering wheel is encountered. The driver now comesto rest in a much shorter distance—perhaps only a few centimeters. Find the magnitude of the net force acting on a 65.0-kg driverwho is decelerated from 18.0 m>s to rest in 5.00 cm.A. 3240 N B. 1.17 * 104NC. 2.11 * 105N D. 4.21 * 105Narrow_forward
- A 110 g hockey puck sent sliding over ice is stopped in 15 m by the frictional force on it from the ice. (a) If its initial speed is 6.0 m/s, what is the magnitude of the frictional force? (b) What is the coefficient of friction between the puck and the ice?arrow_forwardA 10000-kg load sits on the flatbed of a 20000-kg truck moving at 12.0 m/s. Assume that the load is not tied down to the truck, but has a coefficient of static friction of 0.500 and a coefficient of kinetic friction of 0.400 with the flatbed of the truck. If the truck needs to stop in 10.0 m with constant acceleration, what is the force of friction between the load and the truck when the brake is first applied?arrow_forwardA 3.00-kg object is initially moving northward at 15.0 m/s. Then a force of 15.0 N, toward the east, acts on it for 3.70 s. What is the direction of the final velocity? Enter the angle in degrees where positive indicates north of east and negative indicates south of east.arrow_forward
- A 950-kg car pulls a boat on a trailer. ng Time: 03:25: (a) What force resists the motion of the car, boat, and trailer, if the car exerts a 1,232.5-N force on the road and produces an acceleration of 0.5 m/s²? The mass of the boat plus trailer is 500-kg. Number N (b) What is the force pulling the trailer if 80% of the resisting forces are experienced by the boat and trailer? (Hint: Treat the trailer as a separate system and solve a free body diagram.) Number Narrow_forwardA 1000 kg boat is traveling at 90 km/h when its engine is shut off. The magnitude of the frictional force between boat and water is proportional to the speed v of the boat: fk 70v, where v is in meters per second and fk is in newtons. Find the time required for the boat to slow to 45 km/h.arrow_forwardAccident analysis has led experts to believe that Princess Diana experienced a deceleration rate of no less than 700 m/s2 when she was involved in the tragic accident that claimed her life. If she had been wearing a seatbelt experts believe the net force Diana would have experienced would be along the lines of 18,000 N. What would be the rate of deacceleration have been? Assuming Diana had a mass of 60kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY