STEEL DESIGN (LOOSELEAF)
STEEL DESIGN (LOOSELEAF)
6th Edition
ISBN: 9781337400329
Author: Segui
Publisher: CENGAGE L
Question
Book Icon
Chapter 4, Problem 4.3.1P
To determine

(a)

Nominal compressive strength of column

Expert Solution
Check Mark

Answer to Problem 4.3.1P

1267.1kips

Explanation of Solution

Calculation:

Obtain the effective length factor for the support condition

Leff=L

Calculate the effective slenderness ratio using the formula as follows

Slenderness ratio =KLrConsider the properties of the steel from the AISC stell table Substitute 1 for k,(10×12)in for L,and 2.65 for ry.Slenderness ratio=KLr                           =1(10×12)2.65                             =45.2

Calculate the buckling stress by using the formula as follows:

Fe=π2E(KL/r)2

substitute 29000 for E,and 45.2 for KL/r.

Fe=π2E(KL/r)2

    =π2E(KL/r)2   =π2(29000)45.22   =140.1ksi

Check for slenderness ratio by using the relation as follows:

Slenderness ratio=4.71EFyFy is the yield strength.Substitute 50ksi for Fy,and 29000 for E.Slenderness ratio=4.712900050                           =113.4Since the value 45.28 is less than 113.4, so caluculate critical buckling stress using the formula.Fcr=0.658(FyFe)Fy     =0.658(50140.1)(50)     =43.1ksi

Calculate the nominal compressive strength of column by using the formula as follows:

Pn=FcrAgSubstitute 29.40 for Ag,and 43.03 for FcrPn=FcrAg    =43.1(29.40)    =1267.1kips

Conclusion:

Therefore, the nominal compressive strength of column 1267.1kips.

To determine

(b)

Nominal compressive strength of column

Expert Solution
Check Mark

Answer to Problem 4.3.1P

400kips

Explanation of Solution

Calculation:

Calculate the effective slenderness ratio using the formula as follows

Slenderness ratio =KLrConsider the properties of the steel from the AISC steel table Substitute 1 for k,(30×12)in for L,and 2.65 for ry.Slenderness ratio=KLr                           =1(30×12)2.65                             =135.84

Calculate the buckling stress by using the formula as follows:

Fe=π2E(KL/r)2

substitute 29000 for E,and 135.84 for KL/r.

Fe=π2E(KL/r)2

    =π2E(KL/r)2   =π2(29000)135.842   =15.50ksi

Check for slenderness ratio by using the relation as follows:

Slenderness ratio=4.71EFyFy is the yield strength.Substitute 50ksi for Fy,and 29000 for E.Slenderness ratio=4.712900050                           =113.4Since the value 135.84 is greater than 113.4, so caluculate critical buckling stress using the formula.Fcr=0.877Fe     =0.877(15.50)     =13.60ksi

Calculate the nominal compressive strength of column by using the formula as follows:

Pn=FerAgSubstitute 29.40 for Ag,and 13.60 for FcrPn=FcrAg    =13.60(29.40)    =400kips

Conclusion:

Therefore, the nominal compressive strength of column 400kips.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3k a 5 I IKLF d 25 5' S' E=29000ksi I = 400 in 4 Ex = ? Q = ?
A simply supported rectangular RC beam is to carry a uniform factored dead load of 1.2 kip/ft and a concentrated factored live load of 16 kip at mid-span. The beam self-weight is not included in these loads. The concrete weighs 135 pcf. The span length is 25 ft. Please find the smallest section allowed by ACI and design accordingly. Use f c’ = 5,000 psi, f y = 75,000 psi. The exposure is interior with no weather exposure. a. Assume an arbitrary self-weight/ft of the beam. b. Find the maximum factored bending moment in the beam. c. Set up the moment equation and solve for the beam section. d. Revise the assumption if needed
Ideal gas Problems 3-1 The molecular weight of carbon dioxide, CO2, is 44. In an experiment the value y for CO2 was found to be 1.3. Assuming that CO2 is a perfect gas, calculate the gas constant, R, and the specific heats at constant pressure and constant volume, Cp, Cv (0.189 kJ/kg.K; 0.63kJ/kg.K; 0.819kJ/kg.K) 3-2 Oxygen, O2, at 200 bar is to be stored in a steel vessel at 20°C the capacity of the vessel is 0.04m³. Assuming that O₂ is a perfect gas, calculate the mass of oxygen that can be stored in the vessel. The vessel is protected against excessive pressure by a fusible plug which will melt if the temperature rises too high. At what temperature must the plug melt to limit the pressure in the vessel to 240bar? The molecular weight of oxygen is 32 (10.5 kg; 78.6°C) 3-3 A quantity of a certain perfect gas is compressed from an initial state of 0.085m³, 1 bar to a final state of 0.034m³, 3.9 bar. The specific heats at constant volume are 0.724 kJ/kg.K, and the specific heats at…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning