Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.30P
Suppose in free space that
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Don't use ai to answer I will report you answer
complete the table in the attached photos. instructions are below the table
Please show the solution and answers in each. Thank you.
A 120 MVA, 19.5 kV generator has Xₛ = 1.5 pu and is connected to a transmission line by a transformer rated 150 MVA , 230 wye/18 delta kV Watts, and X = 0.1 pu. If the base to be used in the calculation is 100 MVA, 230 kV for the transmission line.
a. Find the per-unit values to be used for the transformer and generator reactances.
b. If the transformer delivers 80% of its rated capacity to the line at 220 kV, express the current in per unit.
c. Find also the current in the genrator in amperes.
Chapter 4 Solutions
Fundamentals of Electromagnetics with Engineering Applications
Ch. 4 - How long does it take for charge density to drop...Ch. 4 - At a particular point in a slab of silver, a...Ch. 4 - A current density is given by J=e.01taA/m2. Find...Ch. 4 - At t=0s, 60.0C is evenly distributed throughout a...Ch. 4 - A propagating electric field is given by...Ch. 4 - A 10.0-MHz magnetic field travels in a fluid for...Ch. 4 - Modify the simple wave program in MATLAB 4.1 to...Ch. 4 - Modify the traveling wave program in MATLAB 4.2 to...Ch. 4 - Prob. 4.9PCh. 4 - A bar magnet is dropped through a conductive ring....
Ch. 4 - Considering Figure 4.7, suppose the area of a...Ch. 4 - Sometimes a transformer is used as an impedance...Ch. 4 - Prob. 4.13PCh. 4 - The mean length around a nickel core of a...Ch. 4 - A triangular wire loop has its vertices at the...Ch. 4 - Referring to Figure 4.23, suppose a conductive bar...Ch. 4 - Suppose we have a conductive bar moving along a...Ch. 4 - The radius r of a perfectly conducting metal loop...Ch. 4 - Rederive Vemf for the rectangular loop of Figure...Ch. 4 - In Figure 4.16, replace the rectangular loop with...Ch. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - A Faraday disk generator is similar to the...Ch. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Suppose a vector field is given by A=2cosaz Verify...Ch. 4 - A pair of 60cm2 area plates are separated by a...Ch. 4 - Plot the loss tangent of seawater ( =4S/m and r=81...Ch. 4 - A 1.0-m-long coaxial cable of inner conductor...Ch. 4 - Suppose in free space that E(z,t)=5.0e2ztaxV/m. Is...Ch. 4 - An electric field propagating in a lossless...Ch. 4 - A magnetic field propagating in free space is...Ch. 4 - Find the instantaneous expression for E for the...Ch. 4 - Given, at some point distant from a source at the...Ch. 4 - In a lossless, nonmagnetic media, the magnetic...Ch. 4 - Suppose, in a nonmagnetic medium of relative...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Find E(z,t) in Problem 4.32 using phasors.Ch. 4 - Prob. 4.41PCh. 4 - Find H(y,t) in Problem 4.36 using phasors.Ch. 4 - In MATLAB 4.4, a polar plot of the phasor...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need an expert mathematical solution. The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture. is rotationally symmetric (not a function of 4), and it is given by U sin (77 sin 0) π sin Find the approximate directivity (dimensionless and in dB) using numerical integration. Use the DIRECTIVITY computer program at the end of this chapter.arrow_forwardDon't use ai to answer I will report you answer.arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Need handwritten solution not using chatgptarrow_forwardHandwritten Solution pleasearrow_forwardThe E-field pattern of an antenna. independent of , varies as follows: E 0 0° ≤ 0≤ 45° 45°<≤ 90° 90° <8180° (a) What is the directivity of this antenna? Umax 7 why did we use this law Umax = 12 but we divided by 2? In the sent Solution = R 27arrow_forward
- The normalized far-zone field pattern of an antenna is given by (sin cos²) E = 0 00 and 0 ≤ ≤ π/2. 3/22 π elsewhere Find the directivity using (a) the exact expression In the sent soalation Use Prad=2+1 7/2 Pre= 2 + 1 Sco³odo + 5 siño de Where did the 2 Com from?arrow_forwardPen and paper solution please with explaination not using chatgptarrow_forwardhowarrow_forward
- A four pole generator having wave wound armature winding has 51 slots ,each slot containing 20 conductors,what will be the voltage generated in the machine when driven at 1500rpm assuming the flux per pole is 7mWb Don't use Artificial intelligencearrow_forwardNeed Handwritten solution Do not use chatgpt Or AIarrow_forwardI need a detailed solution to a problem. The far-zone electric field intensity (array factor) of an end-fire two-element array antenna, placed along the z-axis and radiating into free-space, is given by E=cos (cos - 1) Find the directivity using (a) Kraus' approximate formula (b) the DIRECTIVITY computer program at the end of this chapter Repeat Problem 2.19 when E = cos -jkr 0505π $[ (cos + 1) (a). Elmax = Cost (case-1)] | max" = 1 at 8-0°. 0.707 Emax = 0.707.(1) = cos [(cose,-1)] (cose-1) = ± 0,= {Cos' (2) = does not exist (105(0)= 90° = rad. Bir Do≈ 4T ar=2() = = Bar 4-1-273 = 1.049 dB T₂ a. Elmax = cos((cose +1)), 0.707 = cos (Close,+1)) = 1 at 6 = π Imax (Cose+1)=== G₁ = cos(-2) does not exist. Girar=2()=π. 4T \cos (0) + 90° + rad Do≈ = +=1.273=1.049dB IT 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
What Is a Plane Wave? — Lesson 2; Author: EMViso;https://www.youtube.com/watch?v=ES2WFevGM0g;License: Standard Youtube License