Rob's Market
Rob's Market (RM) is a regional food store chain in the southwest United States. David White, director of Business Intelligence for RM, would like to initiate a study of the purchase behavior of customers who use the RM loyalty card (a card that customers scan at checkout to qualify for discounted prices). The use of the loyalty card allows RM to capture what is known as "point-of-sale" data, that is, a list of products purchased by a given customer as he/she checks out of the market. David feels that understanding of which products tend to be purchased together could lead to insights for better pricing and display strategies as well as a better understanding of sales and the potential impact of different levels of coupon discounts. This type of analysis is known as market basket analysis, as it is a study of what different customers have in their shopping baskets as they check out of the store.
As a study, David wants to investigate customer buying behavior with regard to bread, jelly, and peanut butter. RM's Information Technology (IT) group, at David's request, has provided a data set of purchases by 1000 customers over a one-week period. The data set contains the following variables for each customer:
• Bread - wheat, white, or none
• Jelly - grape, strawberry, or none
• Peanut butter - creamy, natural, or none
The variables appear in the above order from left to right in the data set, where each row is a customer. For example, the first record of the data set is
white grape none
which means that customer #1 purchased white bread, jelly, and no peanut butter.
The second record is
white strawberry none
which means that customer purchased white bread, strawberry jelly, and no peanut butter. The sixth record in the data set is
none none none
which means that the sixth customer did not purchase bread, jelly, or peanut butter.
Other records are interpreted in a similar fashion.
David would like you to do an initial study of the data to get a understanding of RM customer with regard to these three products.
Managerial Report
Prepare a report that gives insight into the purchase behavior of customers who use the RM loyalty card. At a minimum your report should include estimates of the following:
4. The
Want to see the full answer?
Check out a sample textbook solutionChapter 4 Solutions
Essentials of Modern Business Statistics with Microsoft Office Excel (Book Only)
- A well-known company predominantly makes flat pack furniture for students. Variability with the automated machinery means the wood components are cut with a standard deviation in length of 0.45 mm. After they are cut the components are measured. If their length is more than 1.2 mm from the required length, the components are rejected. a) Calculate the percentage of components that get rejected. b) In a manufacturing run of 1000 units, how many are expected to be rejected? c) The company wishes to install more accurate equipment in order to reduce the rejection rate by one-half, using the same ±1.2mm rejection criterion. Calculate the maximum acceptable standard deviation of the new process.arrow_forward5. Let X and Y be independent random variables and let the superscripts denote symmetrization (recall Sect. 3.6). Show that (X + Y) X+ys.arrow_forward8. Suppose that the moments of the random variable X are constant, that is, suppose that EX" =c for all n ≥ 1, for some constant c. Find the distribution of X.arrow_forward
- 9. The concentration function of a random variable X is defined as Qx(h) = sup P(x ≤ X ≤x+h), h>0. Show that, if X and Y are independent random variables, then Qx+y (h) min{Qx(h). Qr (h)).arrow_forward10. Prove that, if (t)=1+0(12) as asf->> O is a characteristic function, then p = 1.arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x ≤x≤x+h), h>0. (b) Is it true that Qx(ah) =aQx (h)?arrow_forward
- 3. Let X1, X2,..., X, be independent, Exp(1)-distributed random variables, and set V₁₁ = max Xk and W₁ = X₁+x+x+ Isk≤narrow_forward7. Consider the function (t)=(1+|t|)e, ER. (a) Prove that is a characteristic function. (b) Prove that the corresponding distribution is absolutely continuous. (c) Prove, departing from itself, that the distribution has finite mean and variance. (d) Prove, without computation, that the mean equals 0. (e) Compute the density.arrow_forward1. Show, by using characteristic, or moment generating functions, that if fx(x) = ½ex, -∞0 < x < ∞, then XY₁ - Y2, where Y₁ and Y2 are independent, exponentially distributed random variables.arrow_forward
- 1. Show, by using characteristic, or moment generating functions, that if 1 fx(x): x) = ½exarrow_forward1990) 02-02 50% mesob berceus +7 What's the probability of getting more than 1 head on 10 flips of a fair coin?arrow_forward9. The concentration function of a random variable X is defined as Qx(h) sup P(x≤x≤x+h), h>0. = x (a) Show that Qx+b(h) = Qx(h).arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt