The volume ( mL ) of 2.26 M potassium hydroxide that contains 8.42 g of solute is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows: Volume of solution ( L ) = moles of solute ( mol ) ( 1 L of solution molarity of solution ( mol ) ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
The volume ( mL ) of 2.26 M potassium hydroxide that contains 8.42 g of solute is to be calculated. Concept introduction: Molarity ( M ) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L . The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows: Volume of solution ( L ) = moles of solute ( mol ) ( 1 L of solution molarity of solution ( mol ) ) The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows: Moles of compound ( mol ) = [ given mass of compound ( g ) ( 1mole of compound ( mol ) molecular mass of compound ( g ) ) ]
The volume (mL) of 2.26M potassium hydroxide that contains 8.42 g of solute is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the volume of the solution when the amount of compound in moles and molarity of solution are given is as follows:
Volume of solution(L)=moles of solute(mol)(1L of solutionmolarity of solution(mol))
The expression to calculate the moles of solute when given mass and molecular mass of compound are given is as follows:
Moles of compound(mol)=[given massof compound(g)(1moleof compound(mol)molecular mass of compound(g))]
(b)
Interpretation Introduction
Interpretation:
The number of Cu2+ ions in 52L of 2.3Mcopper(II)chloride is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the moles of the compound when molarity of solution and volume of solution are given is as follows:
Moles of compound(mol)=[volume of solution(L)(molarityofsolution(mol)1L of solution)]
The expression to calculate the amount of ions in moles is as follows:
amountofion(mol)=(moles of compound(mol))(moles of ion(mol)1mole of compound)
The expression to calculate the number of ions is as follows:
numberof ions=(moles of ions(mol))(6.022×1023ions1mole of ions)
(c)
Interpretation Introduction
Interpretation:
Molarity of 275 mL of solution containing 135 mmol of glucose is to be calculated.
Concept introduction:
Molarity (M) is one of the concentration terms that determine the number of moles of solute present in per litre of solution. Unit of molarity is mol/L.
The expression to calculate the molarity of a solution when moles of solute and volume of solution are given is as follows:
Molarity of solution(M)=moles of solute(mol)volume of solution(L)
く
Predicting the pr
Predict the major products of the following organic reaction:
Δ
Some important notes:
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
• Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are
enantiomers.
?
Click and drag to start drawing a structure.
propose synthesis
Explanation
O Conjugated Pi Systems
Deducing the reactants of a Diels-Alder reaction
Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one
step, by moderately heating the reactants?
?
Δ
If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any
arrangement you like.
• If your answer is no, check the box under the drawing area instead.
Click and drag to start drawing a structure.
X