Organic Chemistry: Principles And Mechanisms (second Edition)
Organic Chemistry: Principles And Mechanisms (second Edition)
2nd Edition
ISBN: 9780393630749
Author: KARTY, Joel
Publisher: W. W. Norton & Company
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 4.21YT

(a)

Interpretation Introduction

Interpretation:

The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.

Concept introduction:

In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.

(b)

Interpretation Introduction

Interpretation:

The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.

Concept introduction:

In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.

(c)

Interpretation Introduction

Interpretation:

The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.

Concept introduction:

In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.

(d)

Interpretation Introduction

Interpretation:

The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.

Concept introduction:

In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.

Blurred answer
Students have asked these similar questions
Question 3 What best describes the product of the following reaction? 1. CH3CH2MgBr (2 eq) 2. H a new stereocenter will not be formed a new stereocenter will be formed an alkyl halide will result an alkane will result an aromatic compound will result 1 pts
Rank the following from most to least reactive toward nucleophilic attack. 1. [Select] [Select] 2. Acyl halide Aldehyde 3. Carboxylate ion 4. Carboxylic acid Ketone 5. [Select]
Question 10 1 pts Which of the following is the most accurate nomenclature? 1-hydroxy-1-methyldecane-4,7-dione 2-hydroxy-2-methyldecane-5,8-dione 4,6-dioxo-2-methyldecane-2-ol 9-hydroxy-9-methyldecane-3,6-dione 8-hydroxy-8-methylnonane-3,6-dione OH

Chapter 4 Solutions

Organic Chemistry: Principles And Mechanisms (second Edition)

Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.1YTCh. 4 - Prob. 4.2YTCh. 4 - Prob. 4.3YTCh. 4 - Prob. 4.4YTCh. 4 - Prob. 4.5YTCh. 4 - Prob. 4.6YTCh. 4 - Prob. 4.7YTCh. 4 - Prob. 4.8YTCh. 4 - Prob. 4.9YTCh. 4 - Prob. 4.10YTCh. 4 - Prob. 4.11YTCh. 4 - Prob. 4.12YTCh. 4 - Prob. 4.13YTCh. 4 - Prob. 4.14YTCh. 4 - Prob. 4.15YTCh. 4 - Prob. 4.16YTCh. 4 - Prob. 4.17YTCh. 4 - Prob. 4.18YTCh. 4 - Prob. 4.19YTCh. 4 - Prob. 4.20YTCh. 4 - Prob. 4.21YTCh. 4 - Prob. 4.22YTCh. 4 - Prob. 4.23YTCh. 4 - Prob. 4.24YTCh. 4 - Prob. 4.25YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning