Concept explainers
(a)
Interpretation:
The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.
(b)
Interpretation:
The Haworth projection (including with dash-wedge notation) for the given line structure of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane.
(c)
Interpretation:
The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.
(d)
Interpretation:
The line structure (including with dash-wedge notation) for the given Haworth projection of a disubstituted cyclohexane is to be drawn.
Concept introduction:
In the case of disubstituted cyclohexane, the relationship between these two substituents with the ring is explained with the help of a Haworth projection. Since cyclohexane ring undergoes chair flipping with no switching either substituent from their side, the relationship between these substituents on a cyclohexane ring does not change on flipping, that is, the cis substituents remain cis and trans remains trans on flipping. In a Haworth projection, the ring is depicted as being planar, and bonds to substituents are drawn perpendicular to that plane in such way that these substituents come in the plane of the ring, and one side of a ring will be either above this plane or below this plane, depending on the rotation around the plane. To draw the line structure from its Haworth projection, view the molecule either from the top of the plane or from the bottom of the plane.

Want to see the full answer?
Check out a sample textbook solution
Chapter 4 Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- Can you help me understand the CBC method on metal bridging by looking at this problem?arrow_forwardA partir de Aluminio y Co(NO3)2ꞏ6H2O, indicar las reacciones a realizar para obtener Azul de Thenard (Al2CoO4).arrow_forwardTo obtain Thenard Blue (Al2CoO4), the following reaction is correct (performed in an oven):Al(OH)3 + Co(OH)2 → Al2CoO4 + 4 H2Oarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
