EBK FUNDAMENTALS OF AERODYNAMICS
EBK FUNDAMENTALS OF AERODYNAMICS
6th Edition
ISBN: 9781259681486
Author: Anderson
Publisher: MCGRAW HILL BOOK COMPANY
bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.1P

Consider the data for the NACA 2412 airfoil given in Figure 4.10. Calculate the lift and moment about the quarter chord (per unit span) for this airfoil when the angle of attack is 4° and the frecstream is at standard sea level conditions with a velocity of 50 ft/s. The chord of the airfoil is 2 ft.

Expert Solution & Answer
Check Mark
To determine

The lift per unit span and the moment about the quarter chord for NASA 2412 airfoil.

Answer to Problem 4.1P

The lift per unit span is 3.18 lb per unit span & the moment per unit span is -0.4277 lb.ft.per unit span.

Explanation of Solution

Given Information:

The velocity of free stream = 50 ft/s

The angle of attack = 4°

The chord of airfoil = 2 ft

Calculation:

Assume the value of density of free stream as ρ=0.002377slug/ft3=1.225kg/m3

The velocity of air stream, V=50ft/s

The dynamic pressure acting on the foil:

  q=12ρV2=12(0.002377)(50)2=2.971lb/ft3

The value of the lift coefficient and momentum coefficient is calculated from the standard values of NACA airfoil. (Reference 11 from textbook named as Fundamental of Aerodynamics, 6th edition)

α (degrees) Lift coefficient ( cl)Drag Coefficient ( cd)Momentum coefficient (   cm,c/4)
-20.050.006-0.042
00.250.006-0.040
20.440.006-0.038
40.640.007-0.036
60.85.0075-0.034
81.080.0092-0.034
101.26.00115-0.0.34

At α=4° (NASA Airfoil)

Lift coefficient, cl=0.64

Momentum coefficient, cm,c/4=0.036

The lift per unit span is given by :

  Ls=qScl

Here S =surface area of the foil = 2 ft2

  Ls=qScl=2.971×2×0.64=3.803lb/perunitspan

For moment about the quarter chord per unit span is given by:

  Mc/4=q.S.c.cm c/4=2.971×2×2×(0.036)=0.42784lb.ftperunitspan

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. A 40 lb. force is applied at point E. There are pins at A, B, C, D, and F and a roller at A. a. Draw a FBD of member EFC showing all the known and unknown forces acting on it. b. Draw a FBD of member ABF showing all the known and unknown forces acting on it. c. Draw a FBD of member BCD showing all the known and unknown forces acting on it. d. Draw a FBD of the entire assembly ADE showing all the known and unknown forces acting on it. e. Determine the reactions at A and D. f. Determine the magnitude of the pin reaction at C. 40 lbs. B A 6 in. 4 in. D F -5 in.4 in 4.
A crude oil of specific gravity0.85 flows upward at a volumetric rate of flow of 70litres per second through a vertical venturimeter,with an inlet diameter of 250 mm and a throat diameter of 150mm. The coefficient of discharge of venturimeter is 0.96. The vertical differences betwecen the pressure toppings is 350mm. i) Draw a well labeled diagram to represent the above in formation  i) If the two pressure gauges are connected at the tapings such that they are positioned at the levels of their corresponding tapping points, determine the difference of readings in N/CM² of the two pressure gauges   ii) If a mercury differential manometer is connected in place of pressure gauges, to the tappings such that the connecting tube up to mercury are filled with oil determine the difference in the level of mercury column.
Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License