
(a)
The tension in the cable.
(a)

Answer to Problem 4.152RP
The tension in the cable is
Explanation of Solution
The free-body diagram is shown in figure 1.
Write the expression for the tension in the cable.
Here,
Write the expression of the vector
Find the magnitude of the vector
Put equations (II) and (III) in equation (I).
Write the expressions for the position vectors.
Here,
Sum of the moments of the forces about the point A must be zero.
Here,
Write the expression for the sum of the moments about the point A.
Here,
Put the above equation in equation (VI) and use determinants.
Conclusion:
Equate the coefficient of
Thus, the tension in the cable is
(b)
The reactions at A and B.
(b)

Answer to Problem 4.152RP
The reaction at A is
Explanation of Solution
Equate the coefficient of
Here,
Substitute
Equate the coefficient of
Here,
Substitute
Write the expression for
Substitute
Refer figure 1.
The net force must be equal to zero.
Here,
Write the expression for the net force.
Here,
Put the above equation in equation (VIII).
Equate the coefficient of
Equate the coefficient of
Equate the coefficient of
Write the expression of
Conclusion:
Thus, the reaction at A is
Want to see more full solutions like this?
Chapter 4 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- (◉ Home - my.uah.eduarrow_forward(read image)arrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992148&offset=nextarrow_forward(◉ Home - my.uah.edu Homework#5 MasteringEngineering Mastering X + 8 https://session.engineering-mastering.pearson.com/myct/itemView?assignmentProblemID=18992144&offset=nextarrow_forwardCalculate the forces in members BC, BG & FG of the truss shown using the Method of Sections. For your answer, provide atruss diagram of the calculated member forces and indicate whether the member is in Tension (+) or Compression (-)arrow_forwardSelect the speed, feed and depth of the cut to turn wrought, low carbon steel (hardness of 200 BHN) on lathe with AISI tool material of HSS M2 or M3. (Hint: refer to Chapter 21 for recommended parameters).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L