ELEMENTARY SURVERYING W/ACCESS PACKAGE
15th Edition
ISBN: 9780134771786
Author: GHILANI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.13P
To determine
The error results from curvature and refraction
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
8.15 An origin-destination pair is connected by a
route with a performance function t₁ = 8+ x1, and
another with a function t₂ = 1 + 2x2 (with x's in
thousands of vehicles per hour and t's in minutes). If
the total origin-destination flow is 4000 veh/h,
determine user-equilibrium and system-optimal route
travel times, total travel time (in vehicle minutes),
and route flows.
8.13 Consider the situation described in Problem
8.11. If the total number of trips remains constant,
determine the amount of amusement floor space that
must be added to destination 2 to attract an
additional 50 social/recreational trips.
5- A basic freeway has 3 lanes in each direction and is on flat terrain. It has a jam density of 190
veh/km and a capacity of 4750 veh/h. The spot speed of 5 cars was collected at the midpoint
of a 3.4 km segment of this freeway.
Vehicle
Speed (km/hr)
1
86
2
89
3
95
4
5
99
100
a) Calculate the space mean speed
b) Calculate the free flow speed based on the given information
c) A directional weekday peak-hour volume of 4640 vehicles is observed, with 1320 vehicles
arriving in the most congested 15-min period. If the traffic stream has 12% large trucks and
buses determine the level of service
6- What are the steps that a 4-step model used to predict travel demand on roads network
consists of? Briefly describe was sort of information each step provides?
7- The bitumen is a conventional bituminous binder has a penetration index of -1 and
= 65°c.
T800 pen
a) Determine the stiffness modulus of this bitumen if the operating conditions are as
follows: temperature of 25°c and loading time of…
Chapter 4 Solutions
ELEMENTARY SURVERYING W/ACCESS PACKAGE
Ch. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10P
Ch. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Similm to Problem 4.32 Eexcept that the rod...Ch. 4 - Prob. 4.35P
Knowledge Booster
Similar questions
- Q) Find the location of centroid for the shaded area shown in Figure below. 20mm 42mm 23mm 30mm 30mm 10mm Xarrow_forwardQuestion 5 (Force Method). Determine the reaction at the supports. Assume A is fixed and B and C are rollers. El is constant. 3 k/ft A 10 ft B 2 k/ft 10 ft Carrow_forwardFind the collapse load (Wu) for the one-end continuous beam shown below. Wu 6 marrow_forward
- 4- As part of a highway interchange project, a ramp will be constructed to allow the vehicles exit the first highway and enter the second highway. The first highway runs north-south and the second one had a right angle to the first one (it runs east-west). Vehicles going to the north can use this exit ramp to enter the second highway as shown in the plan view in the figure below. The design speed in both highways is 100 km/hr. The stationing of the start of the horizontal curve is 40+00. a) Determine the stationing of PI and PT¶ b) The first highway has a vertical grade of +3.5% and the second highway has a grade of - 0.5%. The stationing of the beginning and the end of the crest curve are the same as the horizontal curve. What is the elevation of the end of the vertical curve (PVT) if the elevation of the start point (PVC) is 1500m c) Calculate K for the vertical curve Plan view (horizontal alignment) PT 1 N Profile view (vertical alignment) G1=0.5% PVT PC, 40+00 PVC G1=+3.5%arrow_forward10- A pavement with a thin bituminous surface is going to be constructed with a design traffic of 6*105 ESA. Laboratory testing of the subgrade and pavement materials has given the following CBR values. Design the pavement using the empirical design method. Use the and show how you got the numbers on the graph relevant graph} Subgrade CBR: 5 Granular subbase material: Upper layer CBR> 30 Lower layer CBR = 10 Granular base material CBR >100arrow_forward1- Describe the perception-reaction process in driver's decision making. What are the steps this process consists of and what tasks are included in each step? Why this process should be considered in transportation planning 3- What are the three main parts that can be included in a road cross section? Briefly describe what each part is for? Sketch a typical cross sectionarrow_forward
- Note: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!.arrow_forward8- A granular pavement with thin bituminous surfacing is going to be constructed in a rural area and it is estimated that the average annual daily traffic will be 21,000 vehicles per day. The road will have 3 lanes in each direction. The survey data from the existing roads close to that area shows that 15% of the vehicles in the traffic stream are heavy and the rest are light. However, no details of heavy vehicle types are given. It is also estimated that the annual growth factor is 3.2%. Determine the design traffic (DESA) assuming that the damage index (ESA/HVAG) is 0.9 9- a) What are the three main distress modes in flexible pavements (3 points)? b) What are their likely causesarrow_forwardfind SFD and BMDarrow_forward
- 3.102 Find the force of the gate on the block as shown, where d = 12 m, h = 6 m, and w = 6 m. Water hxw gate h/2 Pivot h/2 Block Problem 3.102arrow_forwardNeed help!! in this martin luther king jr. day is a non working dayarrow_forwardThe plan and 3D elevation of an earth retaining structure used for support excavation is shown in Figs. 3 and 4 respectively. The retaining structure is made of wood planks supported in the horizontal direction on vertical steel piles (HP sections). The HP piles shape of an H and are typically used for piles. The section properties of these sections (A, I, S, etc…) are given in Part 1 of the AISC steel manual. The spacing of the supporting HP piles is 20ft. The height of the piles is 15 from top of the pile to top of the footing. The height of the water table from the top of the footing is 9 ft as shown in the elevation in Fig. 4. The pile height and soil properties and the earth pressure distribution behind the retaining structure are shown in Fig. 5. Figs. 6 shows the equations for earth pressure. q is a live load surcharge that accounts for traffic on top of the embankment; q is typically assumed to be 250 psf (per the bridge code (AASHTO)). Use Fy = 50 ksi 1. Determine…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning