Concept explainers
(a)
Interpretation:
The solution that has the highest molarity is to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The solution in beaker B has the highest molarity.
Explanation of Solution
Consider the particles present in the beaker as moles of solute.
The formula to calculate the molarity of solution in beaker is as follows:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Hence, the solution in beaker B has the highest molarity.
Molarity
(b)
Interpretation:
The solutions that have the same molarity are to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The solution in beaker A and F has the same molarity and solution in beaker C, D and E have the same molarity.
Explanation of Solution
Consider the particles present in the beaker as moles of solute.
The formula to calculate the molarity of solution in beaker is as follows:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
The solution in beaker A and F has the same molarity and the value of molarity is
Molarity
(c)
Interpretation:
Whether the mixture of solution A and C have a higher, a lower, or the same molarity as solution B is to be determined.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The mixture of solution A and C has a lower molarity as compared to solution B.
Explanation of Solution
The number of moles in solution A is
The formula to calculate the total volume is as follows:
Substitute
Substitute
The mixture of solution A and C has lower molarity as compared to solution B.
Molarity
(d)
Interpretation:
Whether the molarity when
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
The molarity when
Explanation of Solution
The volume of solution D is
The volume of solution F is
Substitute
Substitute
The molarity of solution D is same as the molarity of solution F.
Molarity
(e)
Interpretation:
The solvent must be evaporated from solution E for it to have the same molarity as solution A is to be calculated.
Concept introduction:
Molarity
The expression to calculate the molarity of solution when moles of solute and volume of solution are given is as follows:
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 4.12P
Explanation of Solution
The molarity of solution E should be equal to solution A. Therefore the molarity os solution should be
The formula to calculate the molarity of solution in beaker is as follows:
Rearrange the equation (3) to calculate the volume of solution evaporated.
Substitute
Therefore to get the same molarity as of the solution A,
Molarity
Want to see more full solutions like this?
Chapter 4 Solutions
MCGRAW: CHEMISTRY THE MOLECULAR NATURE
- ME EX1) Prblm #19-20 I'm so confused with these problems. Can you please help me solve them and explain them? Problems number 19-20, and thanks! step by step and in detail for me please helparrow_forwardCalculate the flux of oxygen between the ocean and the atmosphere, given that: Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturatedarrow_forward( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...arrow_forward
- A. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation). B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic). (Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in the largest.) 1. A.Electrons in a cyclic conjugated system. 18 B.The compound is (a, aa, or na) a 2. A.Electrons in a cyclic conjugated system. 10 B.The compound is (a, aa, or na) naarrow_forwardWater is boiling at 1 atm pressure in a stainless steel pan on an electric range. It is observed that 2 kg of liquid water evaporates in 30 min. Find the rate of heat transfer to the water (kW).arrow_forwardCould you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the resonance structures that were given please.arrow_forward
- Could you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the question.arrow_forwardplease solve. If the answer is "no error" and it asks me to type something, and i typed a-helix, its always wrong.arrow_forwardCan you please solve and explain this for me in a simple way? I cant seem to comprehend this problem.arrow_forward
- Part I. Problem solving. Include all necessary calculations 13 provide plots and graphs. Complexation wl diphenyl carbazide (OPC) in acidic media is another type of sensitive photometric method used for the analysis of aqueous. hexavalent chromium. At 540nm the cherry-red complex as a result of DPC reaction w/ chromium can be photometrically measured. at this wavelength. - a 25mL The UV-vis analysis for the determination of nexavalent chromium in ground water sample is given below. The experiment was based on external calibration method w/ each measurement sample prepared are as follows lab sample analysis contained the standard 100 ppb croy cor groundwater sample, volumes used as indicated below), 12.50 mL of 0.02 M H2Soy and 5.50 ml of 100 ppm DPC (wi water to adjust final volume to 25-ml). The main stripping method was square wave voltammetry, following the conditions set in the main ASV experiment. Standard 100 Volumetric Groundwater H2SO4 0.20 M, flask Sample, mL ppb CrO4*, 100…arrow_forwardplease helparrow_forwardPredict the products of the following reactions. Draw mechanism arrows for each step for a, b, and c. a.) HBr b.) HI H₂O H2SO4 d.) C12 HO H2SO4 1.) BH3 2.) H2O2, NaOHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)