The necessary condition to reach equilibrium in case of decomposition reaction that leads to gaseous product is to be determined. Concept introduction: Equilibrium is that state of a reaction when the rate of forward direction that leads to product side is the same as the rate of backward direction that leads to reactant site. The concentration of the species present in the reaction remains constant at equilibrium. The general representation of a reversible reaction is: A ( g ) + B ( g ) ⇌ C ( g ) + D ( g ) Decomposition redox reactions are the reactions in which one compound decomposed to form one or more product. The reaction has at least one of the product in element form. Decomposition redox reactions can be further classified as thermal decomposition and electrolytic decomposition. In thermal decomposition, heat is employed for the decomposition reaction while in electrolytic decomposition electrical energy is employed for the decomposition reaction. The general representation of decomposition redox reaction is: Z → X + Y
The necessary condition to reach equilibrium in case of decomposition reaction that leads to gaseous product is to be determined. Concept introduction: Equilibrium is that state of a reaction when the rate of forward direction that leads to product side is the same as the rate of backward direction that leads to reactant site. The concentration of the species present in the reaction remains constant at equilibrium. The general representation of a reversible reaction is: A ( g ) + B ( g ) ⇌ C ( g ) + D ( g ) Decomposition redox reactions are the reactions in which one compound decomposed to form one or more product. The reaction has at least one of the product in element form. Decomposition redox reactions can be further classified as thermal decomposition and electrolytic decomposition. In thermal decomposition, heat is employed for the decomposition reaction while in electrolytic decomposition electrical energy is employed for the decomposition reaction. The general representation of decomposition redox reaction is: Z → X + Y
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 4, Problem 4.123P
Interpretation Introduction
Interpretation:
The necessary condition to reach equilibrium in case of decomposition reaction that leads to gaseous product is to be determined.
Concept introduction:
Equilibrium is that state of a reaction when the rate of forward direction that leads to product side is the same as the rate of backward direction that leads to reactant site. The concentration of the species present in the reaction remains constant at equilibrium. The general representation of a reversible reaction is:
A(g)+B(g)⇌C(g)+D(g)
Decomposition redox reactions are the reactions in which one compound decomposed to form one or more product. The reaction has at least one of the product in element form. Decomposition redox reactions can be further classified as thermal decomposition and electrolytic decomposition. In thermal decomposition, heat is employed for the decomposition reaction while in electrolytic decomposition electrical energy is employed for the decomposition reaction. The general representation of decomposition redox reaction is:
"Water gas" is an industrial fuel composed of a mixture of carbon monoxide and hydrogen gases. When this
fuel is burned, carbon dioxide and water result. From the information given below, write a balanced equation
and determine the enthalpy of this reaction:
CO(g) + O2(g) → CO₂(g) + 282.8 kJ
H2(g) + O2(g) → H₂O(g) + 241.8 kJ
MacBook Air
Page of 3
4. Calculate AG for the following reaction at 25°C. Will the reaction occur (be spontaneous)? How do you
know?
NH3(g) + HCl(g) → NH4Cl(s)
AH=-176.0 kJ
AS-284.8 J-K-1
true or false
The equilibrium constant for this reaction is 0.20.
N2O4(g) ⇔ 2NO2(g)
Based on the above, the equilibrium constant for the following reaction is 5.
4NO2(g) ⇔ 2N2O4(g)