
(a)
Interpretation: The given net ionic equations are to be balanced and the elements that are oxidized and reduced are to be identified.
Concept introduction: Oxidation is a process in which there is a loss of electron during a reaction.
Reduction is a process in which there is a gain of electron during a reaction.
In ionic equation the individual ions of the constituent compound are shown.
The reaction is balanced when the number of atoms and charge are balanced on the both sides of the reaction.
To determine: The balanced net ionic equation and the identification of the elements that are oxidized and reduced.
(a)

Answer to Problem 4.104QP
Solution
The balanced net ionic equation is,
Sulfur is oxidized and manganese is reduced in the reaction.
Explanation of Solution
Explanation
The given net ionic reaction is,
The reaction is balanced when the number of atoms and charge are balanced on the both sides of the reaction.
To balance the above equation, first number of atoms will be balanced.
The number of oxygen atoms is balanced by adding the coefficient
Four hydrogen atoms are present on the right hand side of the reaction. To balance the hydrogen atoms, coefficient
The balanced net ionic equation is,
The common oxidation number of oxygen is
The net charge on
The oxidation number of manganese in
The oxidation number of manganese in
Substitute the value of oxidation number in the above expression.
The oxidation number of manganese in
The oxidation number of manganese in
The net charge on
The oxidation number of manganese in
Substitute the value of oxidation number in the above expression.
The oxidation number of manganese in
The oxidation number of manganese has decreased from
Thus, manganese is reduced.
The oxidation number of sulfur increases from
(b)
To determine: The balanced net ionic equation and the identification of the elements that are oxidized and reduced.
(b)

Answer to Problem 4.104QP
Solution
The balanced net ionic equation is,
Iodine is both oxidized and reduced in the reaction.
Explanation of Solution
Explanation
The given net ionic reaction is,
The reaction is balanced when the number of atoms and charge are balanced on the both sides of the reaction.
To balance the above equation, first oxygen atoms are balanced by adding the coefficient
Now, the hydrogen atoms are balanced by adding
The balanced net ionic equation is,
The common oxidation number of oxygen is
The net charge present on
The oxidation number of iodine atom in
The oxidation number of iodine atom in
Substitute the value of oxidation number in the above expression.
The oxidation number of iodine atom in
The oxidation number of iodine atom in
Therefore, iodine in iodate ion
(c)
To determine: The balanced net ionic equation and the identification of the elements that are oxidized and reduced.
(c)

Answer to Problem 4.104QP
Solution
The balanced net ionic equation is,
Manganese is oxidized and bismuth is reduced in the reaction.
Explanation of Solution
Explanation
The given equation is,
The common oxidation number of oxygen is
The net charge on
The oxidation number of manganese in
The oxidation number of manganese in
Substitute the value of oxidation number in the above expression.
The oxidation number of manganese in
The oxidation number of manganese in
So, the oxidation number of manganese has increased from
The oxidation number of bismuth is calculated by the formula,
The oxidation number of bismuth is assumed to be
The net charge in
Substitute the value of oxidation number in the above expression.
The oxidation number of bismuth in
The oxidation number of bismuth in
So, the oxidation number is decreasing from
The above equation is not balanced.
To balance the equation, coefficient
First oxygen atoms are balanced by adding the coefficient
Then, hydrogen atoms are balanced by adding the coefficient
The balanced net ionic equation is,
Therefore, manganese is oxidized and bismuth is reduced in the reaction.
Want to see more full solutions like this?
Chapter 4 Solutions
CHEMISTRY:SCI.IN CONTEXT (CL)-PACKAGE
- Interpreting NMR spectra is a skill that often requires some amount of practice, which, in turn, necessitates access to a collection of NMR spectra. Beyond Labz Organic Synthesis and Organic Qualitative Analysis have spectral libraries containing over 700 1H NMR spectra. In this assignment, you will take advantage of this by first predicting the NMR spectra for two closely related compounds and then checking your predictions by looking up the actual spectra in the spectra library. After completing this assignment, you may wish to select other compounds for additional practice. 1. Write the IUPAC names for the following two structures: Question 2 Question 3 2. Predict the NMR spectra for each of these two compounds by listing, in the NMR tables below, the chemical shift, the splitting, and the number of hydrogens associated with each predicted peak. Sort the peaks from largest chemical shift to lowest. **Not all slots must be filled**arrow_forward11:14 ... worksheets.beyondlabz.com 3. To check your predictions, click this link for Interpreting NMR Spectra 1. You will see a list of all the - compounds in the spectra library in alphabetical order by IUPAC name. Hovering over a name in the list will show the structure on the chalkboard. The four buttons on the top of the Spectra tab in the tray are used to select the different spectroscopic techniques for the selected compound. Make sure the NMR button has been selected. 4. Scroll through the list of names to find the names for the two compounds you have been given and click on the name to display the NMR spectrum for each. In the NMR tables below, list the chemical shift, the splitting, and the number of hydrogens associated with each peak for each compound. Compare your answers to your predictions. **Not all slots must be filled** Peak Chemical Shift (d) Multiplicity 1 2 3 4 5arrow_forwardО δα HO- H -Br δα HO-- + + -Br [B] 8+ HO- -Br δα नarrow_forward
- 1/2 - 51% + » GAY Organic Reactions Assignment /26 Write the type of reaction that is occurring on the line provided then complete the reaction. Only include the major products and any byproducts (e.g. H₂O) but no minor products. Please use either full structural diagrams or the combination method shown in the lesson. Skeletal/line diagrams will not be accepted. H3C 1. 2. CH3 A Acid OH Type of Reaction: NH Type of Reaction: + H₂O Catalyst + HBr 3. Type of Reaction: H3C 4. Type Reaction: 5. H3C CH2 + H2O OH + [0] CH3 Type of Reaction: 6. OH CH3 HO CH3 + Type of Reaction: 7. Type of Reaction: + [H]arrow_forwardhumbnai Concentration Terms[1].pdf ox + New Home Edit Sign in Comment Convert Page Fill & Sign Protect Tools Batch +WPS A Free Trial Share Inter Concreting Concentration forms. Hydrogen peroxide is a powerful oxidizing agent wed in concentrated solution in rocket fuels and in dilute solution as a hair bleach. An aqueous sulation of H2O2 is 30% by mass and has density of #liligime calculat the Ⓒmolality ⑥mole fraction of molarity. 20 9. B. A sample of Commercial Concentrated hydrochloric ETarrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- Would the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forwardDraw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





