Concept explainers
Explanation of Solution
Optimal solution:
Consider the following linear programing problem:
Subject to the constraints:
Use
Subject to the constraints:
Add slack variables s1,s2 and artificial variable a1 to get:
-(min w′ = -5x1+x2+a1)
Subject to the constraints:
Two Phase Method:
Phase I linear programming problem is,
Subject to the constraints:
The initial simplex table is given below:
w′ | x1 | x2 | a1 | s1 | s2 | rhs | basic variable | |
R0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | w′=0 |
R1 | 0 | 2 | 1 | 1 | 0 | 0 | 6 | a1=6 |
R2 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | s1=4 |
R3 | 0 | 1 | 2 | 0 | 0 | 1 | 5 | s2=5 |
- Since, the basic variable a1 value in R0 is non-zero, therefore, do the transformations
w′ | x1 | x2 | a1 | s1 | s2 | rhs | basic variable | |
R0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | w′=0 |
R1 | 0 | 2 | 1 | 1 | 0 | 0 | 6 | a1=6 |
R2 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | s1=4 |
R3 | 0 | 1 | 2 | 0 | 0 | 1 | 5 | s2=5 |
Since the highest positive entry 2 in R0 corresponds to x1, x1 enters the basis.
w′ | x1 | x2 | a1 | s1 | s2 | rhs | ratio | |
R0 | 1 | 2 | 1 | 0 | 0 | 0 | 6 | - |
R1 | 0 | 2 | 1 | 1 | 0 | 0 | 6 | 3* |
R2 | 0 | 1 | 1 | 0 | 1 | 0 | 4 | 4 |
R3 | 1 | 2 | 0 | 0 | 0 | 1 | 5 | 5 |
Apply the simplex method further:
w′ | x1 | x2 | a1 | s1 | s2 | rhs | basic variable | |
R0 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | w′=0 |
R1 | 0 | 1 | 0 | 0 | 6 | x1 = 3 | ||
R2 | 0 | 0 | 1 | 0 | 1 | s1=1 | ||
R3 | 0 | 0 | 0 | 1 | 2 | s2=2 |
- Optimally reached for phase 1. Proceed to phase 2 with the actual objective function
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 4 Solutions
OPERATIONS RESEARCH >INTERNATIONAL EDITI
- After our initial deployment for our ML home based security system, the first steps we took to contribute further to the project, we conducted load testing, tested and optimize for low latency, and automated user onboarding. What should be next?arrow_forwardWhy investing in skills and technology is a critical factor in the financial management aspect of system projects.arrow_forwardwhy investing in skills and technology is a critical factor in the financial management aspect of systems projects.arrow_forward
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534380588/9780534380588_smallCoverImage.gif)