
EBK MATLAB: AN INTRODUCTION WITH APPLIC
5th Edition
ISBN: 8220102007642
Author: GILAT
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 3P
To determine
To write:
A MATLAB Program that determines the number of bacteria every two hours for
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Write a PIC16F877A program that flash ON the 8-LED's connected to port-B by using
two switches connected to port-D (Do & D₁) as shown in figure below, according to the
following scenarios: (Hint: Use 500ms delay for each case with 4MHz frequency)
1. When Do=1 then B₁,B3,B, are ON.
2. When Do 0 then Bo,B2,B4, B5, B6 are ON.
3. When D₁=1 then B4,B,,B6,B7 are ON.
4. When D₁-0 then Bo,B1,B2,B3 are ON.
U1
5
33
OSC/CLION
OSC2/CLKOUT
ROOINT
RB1
35
RB2
20
17
RACIANO
RESPOM
RATANT
RAZIANZ/VREF-CVREF
RBS
RA3/AN3/VREF+
REPOC
39
14
40
RA4/TOCK C1OUT
13
RB7/PGO
12
RASIAN/SCOUT
15
ROOT1050/TICK
+5V
REGIANERD
REVANDVIR
REZANTICS
RCMT10SUCCP2
17
RC2/CCP1
LED-BARGRAPH-RED
RC3SCHISCL
23
---
MCUANTV
RC4/SOSDA 24
RCS/SDO
RCB/TICK
RC7/RXDT
25
ROOPSPO
RDMPSP1
RD2PSF2
RO3PSP3
RD4PSP4
RDSPSPS
PIC16F877A
ROOPSP
RO7/PSP7
R2
R1
100R 100R
Question 5
The following data were obtained from testing a 48-kVA 240/4800 V step up transformer.
Open-circuit test
Short-circuit test
Voltage (V)
240
150
Current (I)
2
10
Power (W)
120
600
Determine the equivalent circuit of the transformer as viewed from the primary side.
Ans: Rc = 480 ohm, Xm = 123.94 ohm, Reqp = 0.015 ohm, Xeqp = 0.034 ohm
From the following mass-spring system, obtain its transfer function and pole-zero
wwwwwwww wwww
diagram in MATLAB. Analyze how stability varies when entering values.
wwwww
(4)x1
▷ x(t)
M
f(t)
B
f(t) is the input variable and x(t) is the controlled variable.
Chapter 4 Solutions
EBK MATLAB: AN INTRODUCTION WITH APPLIC
Ch. 4 - Prob. 1PCh. 4 - The monthly saving P that has to be deposit in a...Ch. 4 - Prob. 3PCh. 4 - The volume V and the surface area S of a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 -
7. A rocket flying straight up measures the...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - The balance of a loan, B, after n monthly payments...
Ch. 4 - Early explorers often estimated altitude by...Ch. 4 - An isosceles triangle sign is designed to have a...Ch. 4 - 13. A round billboard with radius R — 55 in. is...Ch. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - The intrinsic electrical conductivity a of a...Ch. 4 - Prob. 19PCh. 4 - The net heat exchange by radiation from plate 1...Ch. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - The surface of many airfoils can be described with...Ch. 4 - During a golf match, a certain number of points...Ch. 4 - The dissolution of copper sulfide in aqueous...Ch. 4 - 28. The wind chill temperature, 7WC, is the air...Ch. 4 - Prob. 29P
Knowledge Booster
Similar questions
- R2 L3 C5 BRF_OUT HH Sine_OUT 100 1m 100n C3 C4 100n 100n Figure 9. Square to sine waveform converter circuit How do we make sense of this? First, we note that R2 and C3 form a first order low pass filter and L3 and C4 form another low pass filter. Both low pass filters have been set at the same cutoff frequency. The combination of both form a two stage filter to remove the high frequency content present in the DAB signal. Capacitor C5 is used to remove any residual DC offset in the signal. But let's just deal with the AC steady state response, which means that you don't need to know any of these details, and then can conveniently treat this circuit as a blackbox. What is the theoretical cutoff frequency for the RC and LC filters shown in Figure 9? Answer to within 1% accuracy. (a) RC Filter cutoff frequency (f 1) = kHzarrow_forwardFor the following steady-state AC circuit, find the complex output voltage, VO, shown in the diagram. Write the answer in polar form (angles in degrees), accurate within 1%. L1=0.7H, L2=5H, C=14F, R=0.60, and w=0.7 rad/s L1 m Vo R Vs 5/30°V Answer: ய ww L2 23arrow_forwardPlease draw logic circuitarrow_forward
- A 220-volt, 20-horsepower compound motor (long shunt, Figure 21–16A) has an armature resistance of 0.25 ohm, series field resistance of 0.19 ohm, and shunt field resistance of 33 ohms. a. Calculate the current taken by the motor at the instant of starting if it is con-nected directly to the 220-volt line. b. Calculate the current when the motor is running if the armature is developing 184 volts counter-emf.arrow_forwardDesign a modulo-11 ripple (asynchronous) up-counter with negative edge-triggered T flip-flops and draw the corresponding logic circuit. (I)Build the state diagram and extract the state table (II)Draw the logic circuit (III)What is the maximum modulus of the counter?arrow_forwardthe diagram show 4 motor connected to a k-35 controller. I would like detail explanation to know how the circuit work. Is the controller compatible with the motor? The motor shown is series, parallel or both?arrow_forward
- please draw logic diagram pleasearrow_forwardPlease draw the diagrams please thank youarrow_forwardA plane wave propagating through a medium with &,,-8 μr = 2 has: E = 0.5 e-j0.33z sin (108 t - ẞz) ax V/m. Determine (a) ẞ (b) The loss tangent (c) Wave impedance (d) Wave velocity (e) H fieldarrow_forward
- 2) The phase voltage at the terminals of a balanced three-phase Y-connected load is 2400 V. The load has an impedance of 16+j12 2/6 and is fed from a line having an impedance of 0.10+j0.80 2/6. The Y- connected source at the sending end of the line has a positive phase sequence and an internal impedance of 0.02+j0.16 2/6. Use the a-phase voltage at the load as the reference. a) Construct the a-phase equivalent circuit of the system b) Calculate the line currents IaA, IbB, and Icc c) Calculate the phase voltages at the terminals of the source, Van, Vbn, Vcn- d) Calculate the line voltages at the source, Vab, Vbc and Vca. e) Calculate the internal phase-to-neutral voltages at the source, Va'n, Vb'n, Ve'n,arrow_forward1) • A balanced three-phase circuit has the following characteristics: Y-Y connected The line voltage at the source is Vab = 120√3(0°V • The phase sequence is positive The line impedance is 2+ j3 2/0 The load impedance is 28 + j37 02/0 a) [4 pts] Draw the single phase equivalent circuit for the a-phase. b) [2 pts] Calculate the line current IaA in the a-phase. c) [4 pts] Calculate the line voltage VAB at the load in the a-phase.arrow_forwardFind the value of V0 using the superposition method. Note: The answer is V0=-428.57mvarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,