PHYSICS F/SCI.+ENGR.,CHAPTERS 1-37
5th Edition
ISBN: 9780134378060
Author: GIANCOLI
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 37P
(II) A train locomotive is pulling two cars of the same mass behind it, Fig. 4-39. Determine the ratio of the tension in the coupling (think of it as a cord) between the locomotive and the first car (FT1), to that between the first car and the second car (FT2), for any nonzero acceleration of the train.
FIGURE 4-39 Problem 36.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 4-69). The last climber slips, pulling the second
climber off his feet. The first climber is able to hold them
both. If each climber has a mass of 75 kg, calculate the ten-
sion in each of the two sections of rope between the three
climbers. Ignore friction between the ice and the fallen
climbers.
31.0°
FIGURE 4-69 Problem 83.
(III) (a) Suppose the coefficient of kinetic friction between
ma and the plane in Fig. 4-62 is µk = 0.15, and that
mA = mB = 2.7 kg. As mB moves down, determine the
magnitude of the acceleration of ma and mg, given 0 = 34°.
(b) What smallest value of pk will keep the system from
accelerating? [Ignore masses of the (frictionless) pulley and
the cord.]
mB
FIGURE 4-62
Problem 67.
The 70.0-kg climber in Fig. 4-72 is supported in the
“chimney" by the friction forces exerted on his shoes and
back. The static coefficients of friction between his shoes
and the wall, and between his
back and the wall, are 0.80 and
0.60, respectively. What is the
minimum normal force he must
exert? Assume the walls are ver-
tical and that the static friction
forces are both at their maximum.
Ignore his grip on the rope.
FIGURE 4–72
Problem 89.
Chapter 4 Solutions
PHYSICS F/SCI.+ENGR.,CHAPTERS 1-37
Ch. 4.4 - Suppose you watch a cup slide on the (smooth)...Ch. 4.5 - Prob. 1BECh. 4.5 - If you push on a heavy desk, does it always push...Ch. 4.5 - Return to the first Chapter-Opening Question, page...Ch. 4.7 - Prob. 1FECh. 4.7 - Prob. 1GECh. 4.7 - Prob. 1HECh. 4 - Why does a child in a wagon seem to fall backward...Ch. 4 - If an object is moving, is it possible for the net...Ch. 4 - If the acceleration of an object is zero, are no...
Ch. 4 - Only one force acts on an object. Can the object...Ch. 4 - When a golf ball is dropped to the pavement, it...Ch. 4 - If you walk along a log floating on a lake, why...Ch. 4 - (a) Why do you push down harder on the pedals of a...Ch. 4 - Prob. 9QCh. 4 - The force of gravity on a 2-kg rock is twice as...Ch. 4 - Prob. 11QCh. 4 - When an object falls freely under the influence of...Ch. 4 - Compare the effort (or force) needed to lift a...Ch. 4 - When you stand still on the ground, how large a...Ch. 4 - Whiplash sometimes results from an automobile...Ch. 4 - Mary exerts an upward force of 40N to hold a bag...Ch. 4 - A father and his young daughter are ice skating....Ch. 4 - Prob. 19QCh. 4 - Which of the following objects weighs about 1 N:...Ch. 4 - Why might your foot hurt if you kick a heavy desk...Ch. 4 - When you are running and want to slop quickly, you...Ch. 4 - Suppose that you are standing on a cardboard...Ch. 4 - Prob. 2MCQCh. 4 - Prob. 3MCQCh. 4 - Prob. 4MCQCh. 4 - Prob. 5MCQCh. 4 - Prob. 7MCQCh. 4 - Prob. 9MCQCh. 4 - Prob. 10MCQCh. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 - Prob. 13MCQCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - (II) Superman must stop a 120-km/h train in 150 m...Ch. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - (II) A fisherman yanks a fish vertically out of...Ch. 4 - Prob. 12PCh. 4 - (II) A 20.0-kg box rests on a table. (a) What is...Ch. 4 - (II) A particular race car can cover a...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - (II) Can cars stop on a dime? Calculate the...Ch. 4 - Prob. 19PCh. 4 - (II) Using focused laser light, optical tweezers...Ch. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - (II) An exceptional standing jump would raise a...Ch. 4 - (II) High-speed elevators function under two...Ch. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - (I) Draw the free-body diagram for a basketball...Ch. 4 - (I) A 650-N force acts in a northwesterly...Ch. 4 - (I) Sketch the tree body diagram of a baseball (a)...Ch. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - (II) The cords accelerating the buckets in Problem...Ch. 4 - Prob. 36PCh. 4 - (II) A train locomotive is pulling two cars of the...Ch. 4 - Prob. 38PCh. 4 - (II) A skateboarder, with an initial speed of...Ch. 4 - (II) At the instant a race began, a 65-kg sprinter...Ch. 4 - (II) A mass m is at rest on a horizontal...Ch. 4 - Prob. 42PCh. 4 - (II) A 27-kg chandelier hangs from a ceiling on a...Ch. 4 - (II) Redo Example 413 but (a) set up the equations...Ch. 4 - (II) The block shown in Fig. 4-43 has mass m = 7.0...Ch. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - (II) As shown in Fig. 4-41, five balls (masses...Ch. 4 - A super high-speed 14-car Italian train has a mass...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - (II) A child on a sled reaches the bottom of a...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - (III) Determine a formula for the acceleration of...Ch. 4 - (III) Suppose the pulley in Fig. 446 is suspended...Ch. 4 - Prob. 59PCh. 4 - (II) Three blocks on a frictionless horizontal...Ch. 4 - Prob. 61PCh. 4 - (III) A small block of mass m rests on the sloping...Ch. 4 - (III) The double Atwood machine shown in Fig. 4-48...Ch. 4 - (III) Determine a formula for the magnitude of the...Ch. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - Prob. 67GPCh. 4 - Prob. 69GPCh. 4 - Prob. 70GPCh. 4 - Prob. 71GPCh. 4 - Prob. 72GPCh. 4 - Prob. 73GPCh. 4 - Prob. 74GPCh. 4 - Prob. 75GPCh. 4 - A block (mass mA) lying on a fixed frictionless...Ch. 4 - Prob. 77GPCh. 4 - Prob. 78GPCh. 4 - (a) What minimum force F is needed to lift the...Ch. 4 - Prob. 80GPCh. 4 - A jet aircraft is accelerating at 3.8m/s2 as it...Ch. 4 - Prob. 82GPCh. 4 - Prob. 83GPCh. 4 - A fisherman in a boat is using a 10-lb test...Ch. 4 - Prob. 85GPCh. 4 - Prob. 86GPCh. 4 - Prob. 87GPCh. 4 - Prob. 88GPCh. 4 - Prob. 90GPCh. 4 - Prob. 91GPCh. 4 - Prob. 92GPCh. 4 - Prob. 93GPCh. 4 - Prob. 94GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following provides eviden...
Cosmic Perspective Fundamentals
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
A human female with Turner syndrome (47, X) also expresses the X-linked trait hemophilia, as did her father. Wh...
Concepts of Genetics (12th Edition)
Write an equation that uses the products of photosynthesis as reactants and the reactants of photosynthesis as ...
Campbell Biology in Focus (2nd Edition)
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (II) A 1280-kg car pulls a 350-kg trailer. The car exerts a horizontal force of 3.6x103 N against the ground in order to accelerate. What force does the car exert on the trailer?Assume an effective friction coefficient of 0.15 for the trailerarrow_forward(II) Arlene is to walk across a “high wire" strung horizontally between two buildings 10.0 m apart. The sag in the rope when she is at the midpoint is 10.0°, as shown in Fig. 4-47. If her mass is 50.0 kg, what is the tension in the rope at this point? 10.0° FIGURE 4-47 Problem 23.arrow_forwardA child on a sled comes flying over the crest of a small hill, as shown in Fig. 5–32. His sled does not leave the ground, but he feels the normal force between his chest and the sled decrease as he goes over the hill. Explain this decrease using Newton's second law. FIGURE 5–32 Question 5.arrow_forward
- 12. The box of donuts in Fig. 5-32 has a weight component of 5 N along the frictionless ramp. The force on the box from the cord has magnitude T. When the box is (a) stationary, (b) moving up the ramp at constant speed, (c) moving down the ramp at constant speed, (d) moving up the ramp at decreasing speed, and (e) moving down the ramp at decreasing speed, is T equal to, greater than, or less than 5 N? FRESH DONUTSarrow_forward(II) The two forces F, and F, shown in Fig. 4-52a and b (looking down) act on an 18.5-kg object on a frictionless tabletop. If F = 10.2 N and F, = 16.0 N, find the net force on the object and its acceleration for (a) and (b). y y F2 120° F 90° F (a) (b) FIGURE 4–52 Problem 28.arrow_forward(I) If the coefficient of kinetic friction between a 22-kg crate and the floor is 0.30, what horizontal force is required to move the crate at a steady speed across the floor? What horizontal force is required if Mk is zero?arrow_forward
- (II) On an icy day, you worry about parking your car in your driveway, which has an incline of 12°. Your neighbor’s driveway has an incline of 9.0°, and the driveway across the street is at 6.0°. The coefficient of static friction between tire rubber and ice is 0.15. Which driveway(s) will be safe to park in?arrow_forward(II) A 12.0-kg monkey hangs from a cord suspended fromthe ceiling of an elevator. The cord can withstand a tensionof 185 N and breaks as the elevator accelerates. Whatwas the elevator’s minimum acceleration (magnitude anddirection)?arrow_forward38. 39. FIGURE 4-53 40 Problems 32 and 33. mB Mass ma rests on a smooth horizontal surface; mg hangs istongi inioq le vertically. ni nworda algne 13.0 kg and mB = 5.0 kg in Fig. 4–53, 33. (II) (a) If mA determine the acceleration of each block. (b) If initially is at rest 1.250 m from the edge of the table, how long does it take to reach the edge of the table if the system is allowed to move freely? (c) If mB must ma be if the acceleration of the system is to be kept at 100 g? 1.0 kg, how large %3Darrow_forward
- 4-61. The drum has a weight of 500 N and rests on the floor for which the coefficient of static friction is 4, = 0.5. If a = 0.9 m and b= 1.2 m, determine the smallest magnitude of the force P that will cause impending motion of the drum.arrow_forward(I) Suppose you are standing on a train accelerating at 0.20 g. What minimum coefficient of static friction must exist between your feet and the floor if you are not to slide?arrow_forward(II) Two snowcats in Antarctica are towing a housing unit north, as shown in Fig. 4–50. The sum of the forces F→A and F→B exerted on the unit by the horizontal cables is north, parallel to the line L, and FA = 4500 N. Determine FB and the magnitude of F→A+F→B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY