
Student Solutions Manual With Study Guide, Volume 2 For Serway/vuilles College Physics, 10th
10th Edition
ISBN: 9781285866260
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 31P
A setup similar to the one shown in Figure P4.53 is often used in hospitals to support and apply a traction force to an injured leg. (a) Determine the force of tension in the rope supporting the leg. (b) What is the traction force exerted on the leg? Assume the traction force is horizontal.
Figure P4.53
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m
tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is
horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit.
(a) Determine the required constant friction force (in N) for the last 20 m for the empty test car.
N
(b) Find the highest speed (in m/s) reached by the car during the final section of track length…
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Please answer.
Chapter 4 Solutions
Student Solutions Manual With Study Guide, Volume 2 For Serway/vuilles College Physics, 10th
Ch. 4.3 - Which of the following statements are true? (a) An...Ch. 4.3 - Which has greater value, a newton of gold on Earth...Ch. 4.3 - Respond to each statement, true or false: (a) No...Ch. 4.4 - A small sports car collides head-on with a massive...Ch. 4.5 - Consider the two situations shown in Figure 4.30,...Ch. 4.5 - For the woman being pulled forward on the toboggan...Ch. 4.6 - If you press a book flat against a vertical wall...Ch. 4.6 - A crate is sitting in the center of a flatbed...Ch. 4.6 - Suppose your friend is sitting on a sled and asks...Ch. 4 - Physics Review A hockey player strikes a puck,...
Ch. 4 - Four forces act on an object, given by A = 40.0 N...Ch. 4 - A force of 30.0 N is applied in the positive...Ch. 4 - What would be the acceleration of gravity at the...Ch. 4 - Two monkeys are holding onto a single vine of...Ch. 4 - Two identical strings making an angle of = 30.0...Ch. 4 - Calculate the normal force on a 15.0 kg block in...Ch. 4 - A horizontal force of 95.0 N is applied to a...Ch. 4 - Prob. 9WUECh. 4 - A block of mass 12.0 kg is sliding at an initial...Ch. 4 - A man exerts a horizontal force of 112 N on a...Ch. 4 - An Atwoods machine (Fig. 4.38) consists of two...Ch. 4 - A block of mass m1= 10 kg is on a frictionless...Ch. 4 - A passenger sitting in the rear of a bus claims...Ch. 4 - A space explorer is moving through space far from...Ch. 4 - (a) If gold were sold by weight, would you rather...Ch. 4 - If you push on a heavy box that is at rest, you...Ch. 4 - A ball is held in a persons hand. (a) Identify all...Ch. 4 - A weight lifter stands on a bathroom scale. (a) As...Ch. 4 - (a) What force causes an automobile to move? (b) A...Ch. 4 - If only one force acts on an object, can it be in...Ch. 4 - In the: motion picture It Happened One Night...Ch. 4 - Analyze the motion of a rock dropped in water in...Ch. 4 - Identify the action-reaction pairs in the...Ch. 4 - Draw a free-body diagram for each of the following...Ch. 4 - In a tug-of-war between two athletes, each pulls...Ch. 4 - Suppose you are driving a car at a high speed. Why...Ch. 4 - As a block slides down a frictionless incline,...Ch. 4 - A crate remains stationary after it has been...Ch. 4 - In Figure 4.4, a locomotive has broken through the...Ch. 4 - If an object is in equilibrium, which of the...Ch. 4 - A truck loaded with sand accelerates along a...Ch. 4 - A large crate of mass m is placed on the back of a...Ch. 4 - Which of the following statements are true? (a) An...Ch. 4 - The heaviest invertebrate is the giant squid,...Ch. 4 - A football punter accelerates a football from rest...Ch. 4 - A 6.0-kg object undergoes an acceleration of 2.0...Ch. 4 - One or more external forces are exerted on each...Ch. 4 - A bag of sugar weighs 5.00 lb on Earth. What would...Ch. 4 - A freight train has a mass of 1.5 107 kg. If the...Ch. 4 - A 75-kg man standing on a scale in an elevator...Ch. 4 - Consider a solid metal sphere (S) a few...Ch. 4 - As a fish jumps vertically out of the water,...Ch. 4 - A 5.0-g bullet leaves the muzzle of a rifle with a...Ch. 4 - A boat moves through the water with two forces...Ch. 4 - Two forces are applied to a car in an effort to...Ch. 4 - A 970.-kg car starts from rest on a horizontal...Ch. 4 - An object of mass m is dropped from the roof of a...Ch. 4 - After falling from rest from a height of 30.0 m, a...Ch. 4 - The force exerted by the wind on the sails of a...Ch. 4 - (a) Find the tension in each cable supporting the...Ch. 4 - A certain orthodontist uses a wire brace to align...Ch. 4 - A 150-N bird feeder is supported by three cables...Ch. 4 - The leg and cast in Figure P4.40 weigh 220 N (w1)....Ch. 4 - Two blocks each of mass m are fastened to the top...Ch. 4 - Two blocks each of mass m = 3.50 kg are fastened...Ch. 4 - The distance between two telephone poles is 50.0...Ch. 4 - The systems shown in Figure P4.58 are in...Ch. 4 - A 5.0-kg bucket of water is raised from a well by...Ch. 4 - A crate of mass m = 32 kg rides on the bed of a...Ch. 4 - Two blocks of masses m and 2m are held in...Ch. 4 - Two packing crates of masses 10.0 kg and 5.00 kg...Ch. 4 - Assume the three blocks portrayed in Figure P4.59...Ch. 4 - A block of mass m = 5.8 kg is pulled up a = 25...Ch. 4 - A setup similar to the one shown in Figure P4.53...Ch. 4 - Two blocks of masses m1 and m2 (m1 m2) are placed...Ch. 4 - A 276-kg glider is being pulled by a 1 950-kg jet...Ch. 4 - In Figure P4.63, the light, taut, unstretchable...Ch. 4 - (a) An elevator of mass m moving upward has two...Ch. 4 - An object with mass m1 = 5.00 kg rests on a...Ch. 4 - A 1.00 103 car is pulling a 300.-kg trailer....Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A dockworker loading crates on a ship finds that a...Ch. 4 - In Figure P4.64, m1 = 10. kg and m2 = 4.0 kg. The...Ch. 4 - A 1.00 103-N crate is being pushed across a level...Ch. 4 - A block of mass 3m is placed on a frictionless...Ch. 4 - Consider a large truck carrying a heavy load, such...Ch. 4 - A crate of mass 45.0 kg is being transported on...Ch. 4 - Objects with masses m1 = 10.0 kg and m2 = 5.00 kg...Ch. 4 - A hockey puck struck by a hockey stick is given an...Ch. 4 - The coefficient of static friction between the...Ch. 4 - A student decides to move a box of books into her...Ch. 4 - An object falling under the pull of gravity is...Ch. 4 - A car is traveling at 50.0 km/h on a flat highway....Ch. 4 - A 3.00-kg block starts from rest at the top of a...Ch. 4 - A 15.0-lb block rests on a horizontal floor, (a)...Ch. 4 - To meet a U.S. Postal Service requirement,...Ch. 4 - Objects of masses m1 = 4.00 kg and m2 = 9.00 kg...Ch. 4 - The person in Figure P4.49 weighs 170. lb. Each...Ch. 4 - As a protest against the umpires calls, a baseball...Ch. 4 - Three objects are connected on a table as shown in...Ch. 4 - The force exerted by the wind on a sailboat is...Ch. 4 - (a) What is the resultant force exerted by the two...Ch. 4 - (a) What is the minimum force of friction required...Ch. 4 - A boy coasts down a hill on a sled, reaching a...Ch. 4 - A woman at an airport is towing her 20.0-kg...Ch. 4 - A box rests on the back of a truck. The...Ch. 4 - Three objects are connected by light strings as...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - A high diver of mass 70.0 kg steps off a board...Ch. 4 - A 2.00-kg aluminum block and a 6.00-kg copper...Ch. 4 - An object of mass m1 hangs from a string that...Ch. 4 - Two boxes of fruit on a frictionless horizontal...Ch. 4 - Measuring coefficients of friction A coin is...Ch. 4 - A fisherman poles a boat as he searches for his...Ch. 4 - A rope with mass m, is attached to a block with...Ch. 4 - A car accelerates down a hill (Fig. P4.87), going...Ch. 4 - Prob. 74APCh. 4 - The parachute on a race car of weight 8 820 N...Ch. 4 - On an airplanes takeoff, the combined action of...Ch. 4 - The board sandwiched between two other boards in...Ch. 4 - A sled weighing 60.0 N is pulled horizontally...Ch. 4 - A 72-kg man stands on a spring scale in an...Ch. 4 - A magician pulls a tablecloth from under a 200-g...Ch. 4 - An inventive child wants to reach an apple in a...Ch. 4 - A fire helicopter carries a 620-kg bucket of water...Ch. 4 - A crate of weight Fg is pushed by a force P on a...Ch. 4 - In Figure P1.84, the pulleys and the cord are...Ch. 4 - What horizontal force must ho applied to a large...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
An electric motor has an effective resistance of 32.0 and an inductive reactance of 45.0 when working under l...
Fundamentals of Physics Extended
How could you separate a mixture of the following compounds? The reagents available to you are water, either, 1...
Organic Chemistry (8th Edition)
Some people compare DNA to a blueprint stored in the office of a construction company. Explain how this analogy...
Biology: Concepts and Investigations
6. How can you use the features found in each chapter?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A shot putter releases a shot at 13 m/s at an angle of 42 degrees to the horizontal and from a height of 1.83 m above the ground. (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:arrow_forward"looks" like a particle.) ...32 GO In Fig. 22-55, positive charge q = 7.81 pC is spread uni- formly along a thin nonconducting rod of length L = 14.5 cm. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the electric field produced at point P, at distance R = 6.00 cm from the rod along its perpendicular bisector? R y Р + + + + + + + + +-× L Figure 22-55 Problem 32.arrow_forward1) A horizontal wire carrying current I in +x direction on the x-axis from x=0 to x=2 2) A vertical wire carrying current I upward at along the x=2 line from y=0 to y=8 3) A diagonal straight wire started at the origin and it ends at y=8 x=2 carrying a current in SE direction ( diagonally downward); y=4x In a regional magnetic field that is given in vector notation by B = ( y i - x j )/(x^2+y^2+25) As components Bx = (y+1)/x^2+y^2+25) By = (1- x )/(x^2+y^2+25) Find the integral expression for the net force for each branch carrying 5 ampere current.arrow_forward
- An electric power station that operates at 30 KV and uses a 15:1 set step-up ideal transformer is producing 400MW (Mega-Watt) of power that is to be sent to a big city with only 2.0% loss. What which is located 270 km away is the resistance of the Two wires that are being used? 52arrow_forwardSlink, from Toy Story, is a slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed (as shown in figure A) with no initial velocity and reaches the floor right as his velocity hits zero again (as shown in figure C).arrow_forwardThe character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forward
- Calculate the energy needed to melt 50 g of 0°C icearrow_forwardTwo very long line charges are set up along lines that areparallel to the z-axis, so they set up Electric fields strictly in the xy plane. One goes throughthe x-axis at x = −0.40 m and has charge a density λ1 = +12.0 μC/m, the other goesthrough the x-axis at x = +0.40 m has charge density λ2 = −8.0 μC/m.A. Find the Electric field at point A: (0.40, 0.80) (distances in meters). Give answersin unit vector notation and draw a graph of the x-y plane with the E-fields you justfound.B. Find a point on the x-axis at which the total E-field is 0.arrow_forwardIn order to increase the amount of exercise in her daily routine, Tara decides to walk up the four flights of stairs to her car instead of taking the elevator. Each of the steps she takes are 18.0 cm high, and there are 12 steps per flight. (a) If Tara has a mass of 77.0 kg, what is the change in the gravitational potential energy of the Tara-Earth system (in J) when she reaches her car? ] (b) If the human body burns 1.5 Calories (6.28 x 10³ J) for each ten steps climbed, how much energy (in J) has Tara burned during her climb? ] (c) How does the energy she burned compare to the change in the gravitational potential energy of the system? Eburned Δυarrow_forward
- A 4.40 kg steel ball is dropped onto a copper plate from a height of 10.0 m. If the ball leaves a dent 2.75 mm deep, what is the average force exerted by the plate on the ball during the impact? Narrow_forwardA block of mass m = 7.00 kg is released from rest from point and slides on the frictionless track shown in the figure below. (Assume h₂ = 7.80 m.) a m ha 3.20 m 2.00 m i (a) Determine the block's speed at points ® and point B ©. m/s m/s point (b) Determine the net work done by the gravitational force on the block as it moves from point J A to pointarrow_forwardA 1.10 x 10²-g particle is released from rest at point A on the inside of a smooth hemispherical bowl of radius R R B 2R/3 (a) Calculate its gravitational potential energy at A relative to B. ] (b) Calculate its kinetic energy at B. ] (c) Calculate its speed at B. m/s (d) Calculate its potential energy at C relative to B. J (e) Calculate its kinetic energy at C. ] = 26.5 cm (figure below).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY