College Physics
7th Edition
ISBN: 9780321601834
Author: Jerry D. Wilson, Anthony J. Buffa, Bo Lou
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 30E
(a)
To determine
Draw the free body diagram of the person.
(b)
To determine
The upward force exerted by pole on the person.
(c)
To determine
Time duration of slide taken by the 2nd person.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?
Two-point charges of 5.00 µC and -3.00 µC are placed 0.250 m apart.a) What is the electric force on each charge? Include strength and direction and a sketch.b) What would be the magnitude of the force if both charges are positive? How about the direction?
c) What will happen to the electric force on each piece of charge if they are moved twice as far apart? (Give a numerical answer as well as an explanation.)
y[m]
The figure shows two snapshots of a single wave on a string. The wave is
traveling to the right in the +x direction. The solid line is a snapshot of the wave
at time t=0 s, while the dashed line is a snapshot of the wave at t=0.48s.
0
0.75
1.5
2.25
3
8
8
6
6
4
2
4
2
0
-2
-2
-4
-4
-6
-6
-8
-8
0
0.75
1.5
2.25
3
x[m]
Determine the period of the wave in units of seconds.
Enter your numerical answer below including at least 3 significant figures. Do
not enter a fraction, do not use scientific notation.
Chapter 4 Solutions
College Physics
Ch. 4 - Prob. 1MCQCh. 4 - A force (a) always produces motion, (b) is a...Ch. 4 - If an object is moving at constant velocity, (a)...Ch. 4 - If the net force on an object is zero, the object...Ch. 4 - The force required to keep a rocket ship moving at...Ch. 4 - Prob. 6MCQCh. 4 - Prob. 7MCQCh. 4 - The weight of an object is directly proportional...Ch. 4 - Prob. 9MCQCh. 4 - A brick hits a glass window. The brick breaks the...
Ch. 4 - Prob. 11MCQCh. 4 - Prob. 12MCQCh. 4 -
The condition(s) for translational equilibrium is...Ch. 4 - Prob. 14MCQCh. 4 - Prob. 15MCQCh. 4 - Prob. 16MCQCh. 4 - Prob. 17MCQCh. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - The following is an old trick (Fig. 4.28). If a...Ch. 4 - Prob. 7CQCh. 4 - A student weighing 600 N crouches on a scale and...Ch. 4 - An astronaut has a mass of 70 kg when measured on...Ch. 4 -
In general, this chapter has considered forces...Ch. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - Prob. 16CQCh. 4 - Prob. 17CQCh. 4 -
Identify the direction of the friction force in...Ch. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - Which has more inertia, 20 cm3 of water or 10 cm3...Ch. 4 - Prob. 2ECh. 4 - In Exercise 2, if the 35-N force acted downward at...Ch. 4 -
A net force of 4.0 N gives an object an...Ch. 4 - Prob. 5ECh. 4 - Prob. 6ECh. 4 - A 5.0-kg block at rest on a frictionless surface...Ch. 4 - (a) You are told that an object has zero...Ch. 4 - A fish weighing 25 lb is caught and hauled onto...Ch. 4 - A 1.5-kg object moves up the y-axis at a constant...Ch. 4 - Three horizontal forces (the only horizontal ones)...Ch. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - Prob. 14ECh. 4 - IE ● A 6.0-kg object is brought to the Moon, where...Ch. 4 - A gun is fired and a 50-g bullet is accelerated to...Ch. 4 - Prob. 17ECh. 4 - Prob. 18ECh. 4 - Prob. 19ECh. 4 - Prob. 20ECh. 4 - Prob. 21ECh. 4 - Prob. 22ECh. 4 - Prob. 23ECh. 4 - Prob. 24ECh. 4 - An object (mass 10.0 kg) slides upward on a...Ch. 4 - In an emergency stop to avoid an accident, a...Ch. 4 - Prob. 27ECh. 4 - A force of 10 N acts on two blocks on a...Ch. 4 - Prob. 29ECh. 4 - In a pole-sliding game among friends, a 90-kg man...Ch. 4 - A book is sitting on a horizontal surface. (a)...Ch. 4 - In an Olympic figure-skating event, a 65-kg male...Ch. 4 -
A sprinter of mass 65.0 kg starts his race by...Ch. 4 - Jane and John, with masses of 50 kg and 60 kg,...Ch. 4 - Prob. 35ECh. 4 - A 75.0-kg person is standing on a scale in an...Ch. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - The weight of a 500-kg object is 4900 N. (a) When...Ch. 4 - A boy pulls a box of mass 30 kg with a force of 25...Ch. 4 - Prob. 41ECh. 4 - Prob. 42ECh. 4 - Prob. 43ECh. 4 - Prob. 44ECh. 4 - Prob. 45ECh. 4 - Assuming ideal frictionless conditions for the...Ch. 4 - Prob. 47ECh. 4 -
A55-kg gymnast hangs vertically from a pair of...Ch. 4 - A physicist’s car has a small lead weight...Ch. 4 - A 10-kg mass is suspended as shown in Fig. 4.41....Ch. 4 - Prob. 51ECh. 4 - Prob. 52ECh. 4 - Prob. 53ECh. 4 - A horizontal force of 40 N acting on a block on a...Ch. 4 - The Atwood machine consists of two masses...Ch. 4 - Prob. 56ECh. 4 - Prob. 57ECh. 4 - Prob. 58ECh. 4 - Prob. 59ECh. 4 - In the frictionless apparatus shown in Fig. 4.43,...Ch. 4 - In the ideal setup shown in Fig. 4.43, m1 = 3.0 kg...Ch. 4 - A20-kg box sits on a rough horizontal surface....Ch. 4 - Prob. 63ECh. 4 - Prob. 64ECh. 4 - Prob. 65ECh. 4 - Prob. 66ECh. 4 - A 1500-kg automobile travels at 90 km/h along a...Ch. 4 - Prob. 68ECh. 4 - Prob. 69ECh. 4 - Prob. 70ECh. 4 - Prob. 71ECh. 4 - Prob. 72ECh. 4 - Suppose the slope conditions for the skier shown...Ch. 4 - Prob. 74ECh. 4 - A block that has a mass of 2.0 kg and is 10 cm...Ch. 4 - In the apparatus shown in Fig. 4.46, m1 = 10 kg...Ch. 4 - In loading a fish delivery truck, a person pushes...Ch. 4 -
An object (mass 3.0 kg) slides upward on a...Ch. 4 - For the apparatus shown in Fig. 4.40, what is the...Ch. 4 - Prob. 81ECh. 4 - Prob. 82ECh. 4 - Prob. 83ECh. 4 - Prob. 84ECh. 4 - Prob. 85ECh. 4 - Prob. 86ECh. 4 - Prob. 87ECh. 4 - Prob. 88E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardAn extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.arrow_forwardAn extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.arrow_forward
- A sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?arrow_forwardA car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?arrow_forwardA bee strikes a windshield of a car on the freeway and gets crushed. What can you conclude about the force on the bee versus the force on the windshield, and on what principle is this based?arrow_forward
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY