
Fundamentals of Physics
10th Edition
ISBN: 9781118230718
Author: David Halliday
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 2Q
To determine
To find:
a) Initial position vector
b) Final position vector
c)
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Calculate the value of the force F at which the 20 kg uniformly dense cabinet
will start to tip. Calculate the acceleration of the cabinet at this force F. Must
include the FBD and KD of the system. Ignore friction.
1) A 2.0 kg toy car travelling along a smooth horizontal surface experiences a horizontal force Fas shown in the
picture to the left. Assuming the rightward direction to be positive and if the car has an initial velocity of 60.0m/s
to the right, calculate the velocity of the car after the first 10.0s of motion. (Force is in Newtons and time in
seconds). (Hint: Use impulse-momentum theorem)
F
5.0
10
0
-10
3) Two bumper cars of masses 600 kg and 900 kg travelling (on a smooth surface) with velocities 8m/s and 4 m/s
respectively, have a head on collision. If the coefficient of restitution is 0.5. a) What sort of collision is this? b)
Calculate their velocities immediately after collision. c) If the coefficient of restitution was 1 instead of 0.5, what
is the amount of energy lost during collision?
Chapter 4 Solutions
Fundamentals of Physics
Ch. 4 - Figure 4-21 shows the path taken by a skunk...Ch. 4 - Prob. 2QCh. 4 - When Paris was shelled from 100 km away with the...Ch. 4 - You are to launch a rocket, from just above the...Ch. 4 - Figure 4-23 shows three situations in which...Ch. 4 - The only good use of a fruitcake is in catapult...Ch. 4 - An airplane flying horizontally at a constant...Ch. 4 - In Fig. 4-25, a cream tangerine is thrown up past...Ch. 4 - Figure 4-26 shows three paths for a football...Ch. 4 - A ball is shot from ground level over level ground...
Ch. 4 - Figure 4-28 shows four tracks either half- or...Ch. 4 - In Fig. 4-29, particle P is in uniform circular...Ch. 4 - a Is it possible to be accelerating while...Ch. 4 - While riding in a moving car, you toss an egg...Ch. 4 - A snowball is thrown from ground level by someone...Ch. 4 - You are driving directly behind a pickup truck,...Ch. 4 - At what point in the path of a projectile is the...Ch. 4 - In shot put, the shot is put thrown from above the...Ch. 4 - Prob. 1PCh. 4 - A watermelon seed has the following coordinates: x...Ch. 4 - A positron undergoes a displacement r = 2.0 i 3.0...Ch. 4 - The minute hand of a wall clock measures 10 cm...Ch. 4 - SSM A train at a constant 60.0 km/h moves east for...Ch. 4 - An electrons position is given by...Ch. 4 - An ions position vector is initially...Ch. 4 - A plane flies 483 km east from city A to city B in...Ch. 4 - Figure 4-30 gives the path of a squirrel moving...Ch. 4 - The position vector r=5.00ti+(et+ft2)j locates a...Ch. 4 - Prob. 11PCh. 4 - At one instant a bicyclist is 40.0 m due east of a...Ch. 4 - SSM A particle moves so that its position in...Ch. 4 - A proton initially has v=4.0i2.0j+3.0k and then...Ch. 4 - SSM ILW A particle leaves the origin with an...Ch. 4 - GO The velocity v of a particle moving in the xy...Ch. 4 - A cart is propelled over an xy plane with...Ch. 4 - A moderate wind accelerates a pebble over a...Ch. 4 - The acceleration of a particle moving only on a...Ch. 4 - GO In Fig. 4-32, particle A moves along the line y...Ch. 4 - A dart is thrown horizontally with an initial...Ch. 4 - A small ball rolls horizontally off the edge of a...Ch. 4 - A projectile is fired horizontally from a gun that...Ch. 4 - In the 1991 World Track and Field Championships in...Ch. 4 - The current world-record motorcycle jump is 77.0...Ch. 4 - A stone is catapulted at time t = 0, with an...Ch. 4 - ILW A certain airplane has a speed of 290.0 km/h...Ch. 4 - GO In Fig. 4-34, a stone is projected at a cliff...Ch. 4 - A projectiles launch speed is five times its speed...Ch. 4 - GO A soccer ball is kicked from the ground with an...Ch. 4 - In a jump spike, a volleyball player slams the...Ch. 4 - GO You throw a ball toward a wall at speed 25.0...Ch. 4 - SSM A plane, diving with constant speed at an...Ch. 4 - A trebuchet was a hurling machine built to attack...Ch. 4 - SSM A rifle that shoots bullets at 460 m/s is to...Ch. 4 - GO During a tennis match, a player serves the ball...Ch. 4 - SSM WWW A lowly high diver pushes off horizontally...Ch. 4 - A golf ball is struck at ground level. The speed...Ch. 4 - In Fig. 4-37, a ball is thrown leftward from the...Ch. 4 - Suppose that a shot putter can put a shot at the...Ch. 4 - GO Upon spotting an insect on a twig overhanging...Ch. 4 - In 1939 or 1940, Emanuel Zacchini took his human...Ch. 4 - ILW A ball is shot from the ground into the air....Ch. 4 - A baseball leaves a pitchers hand horizontally at...Ch. 4 - In Fig. 4-40, a ball is launched with a velocity...Ch. 4 - GO In basketball, hang is an illusion in which a...Ch. 4 - Prob. 47PCh. 4 - GO In Fig. 4-41, a ball is thrown up onto a roof,...Ch. 4 - SSM A football kicker can give the ball an initial...Ch. 4 - GO Two seconds after being projected from ground...Ch. 4 - A skilled skier knows to jump upward before...Ch. 4 - A ball is to be shot from level ground toward a...Ch. 4 - GO In Fig. 4-44, a baseball is hit at a height h =...Ch. 4 - GO A ball is to be shot from level ground with a...Ch. 4 - SSM A ball rolls horizontally off the top of a...Ch. 4 - An Earth satellite moves in a circular orbit 640...Ch. 4 - A carnival merry-go-round rotates about a vertical...Ch. 4 - A rotating fan completes 1200 revolutions every...Ch. 4 - ILW A woman rides a carnival Ferris wheel at...Ch. 4 - A centripetal-acceleration addict rides in uniform...Ch. 4 - When a large star becomes a supernova, its core...Ch. 4 - What is the magnitude of the acceleration of a...Ch. 4 - GO At t1 = 2.00 s, the acceleration of a particle...Ch. 4 - GO A particle moves horizontally in uniform...Ch. 4 - A purse at radius 2.00 m and a wallet at radius...Ch. 4 - A particle moves along a circular path over a...Ch. 4 - SSM WWW A boy whirls a stone in a horizontal...Ch. 4 - GO A cat rides a merry-go-round turning with...Ch. 4 - A cameraman on a pickup truck is traveling...Ch. 4 - A boat is traveling upstream in the positive...Ch. 4 - A suspicious-looking man runs as fast as he can...Ch. 4 - A rugby player runs with the ball directly toward...Ch. 4 - Two highways intersect as shown in Fig. 4-46. At...Ch. 4 - After flying for 15 min in a wind blowing 42 km/h...Ch. 4 - SSM A train travels due south at 30 m/s relative...Ch. 4 - A light plane attains an airspeed of 500 km/h. The...Ch. 4 - SSM Snow is falling vertically at a constant speed...Ch. 4 - In the overhead view of Fig. 4-47, Jeeps P and B...Ch. 4 - SSM ILW Two ships, A and B, leave port at the same...Ch. 4 - GO A 200-m-wide river flows due east at a uniform...Ch. 4 - GO Ship A is located 4.0 km north and 2.5 km east...Ch. 4 - GO A 200-m-wide river has a uniform flow speed of...Ch. 4 - A woman who can row a boat at 6.4 km/h in still...Ch. 4 - In Fig. 4-48a, a sled moves in the negative x...Ch. 4 - You are kidnapped by political-science majors who...Ch. 4 - A radar station detects an airplane approaching...Ch. 4 - SSM A baseball is hit at ground level. The ball...Ch. 4 - Long flights at midlatitudes in the Northern...Ch. 4 - SSM A particle starts from the origin at t = 0...Ch. 4 - At what initial speed must the basketball player...Ch. 4 - During volcanic eruptions, chunks of solid rock...Ch. 4 - An astronaut is rotated in a horizontal centrifuge...Ch. 4 - SSM Oasis A is 90 km due west of oasis B. A desert...Ch. 4 - Curtain of death. A large metallic asteroid...Ch. 4 - Figure 4-53 shows the straight path of a particle...Ch. 4 - For womens volleyball the top of the net is 2.24 m...Ch. 4 - SSM A rifle is aimed horizontally at a target 30 m...Ch. 4 - A particle is in uniform circular motion about the...Ch. 4 - In Fig. 4-54, a lump of wet putty moves in uniform...Ch. 4 - An iceboat sails across the surface of a frozen...Ch. 4 - In Fig. 4-55, a ball is shot directly upward from...Ch. 4 - A magnetic field forces an electron to move in a...Ch. 4 - In 3.50 h, a balloon drifts 21.5 km north, 9.70 km...Ch. 4 - A ball is thrown horizontally from a height of 20...Ch. 4 - A projectile is launched with an initial speed of...Ch. 4 - The position vector for a proton is initially...Ch. 4 - A particle P travels with constant speed on a...Ch. 4 - The fast French train known as the TGV Train ...Ch. 4 - a If an electron is projected horizontally with a...Ch. 4 - A person walks up a stalled 15-m-long escalator in...Ch. 4 - a What is the magnitude of the centripetal...Ch. 4 - The range of a projectile depends not only on v0...Ch. 4 - Figure 4-57 shows the path taken by a drunk skunk...Ch. 4 - The position vector r of a particle moving in the...Ch. 4 - An electron having an initial horizontal velocity...Ch. 4 - An elevator without a ceiling is ascending with a...Ch. 4 - A football player punts the football so that it...Ch. 4 - An airport terminal has a moving sidewalk to speed...Ch. 4 - Prob. 119PCh. 4 - A sprinter running on a circular track has a...Ch. 4 - Suppose that a space probe can withstand the...Ch. 4 - GO You are to throw a ball with a speed of 12.0...Ch. 4 - A projectile is fired with an initial speed v0 =...Ch. 4 - A graphing surprise. At time t = 0, a burrito is...Ch. 4 - A cannon located at sea level fires a ball with...Ch. 4 - The magnitude of the velocity of a projectile when...Ch. 4 - A frightened rabbit moving at 6.00 m/s due east...Ch. 4 - The pilot of an aircraft flies due east relative...Ch. 4 - The pitcher in a slow-pitch softball game releases...Ch. 4 - Some state trooper departments use aircraft to...Ch. 4 - A golfer tees off from the top of a rise, giving...Ch. 4 - A track meet is held on a planet in a distant...Ch. 4 - A helicopter is flying in a straight line over a...Ch. 4 - A car travels around a flat circle on the ground,...Ch. 4 - You throw a ball from a cliff with an initial...Ch. 4 - A baseball is hit at Fenway Park in Boston at a...Ch. 4 - A transcontinental flight of 4350 km is scheduled...Ch. 4 - A woman can row a boat at 6.40 km/h in still...
Knowledge Booster
Similar questions
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardGive a more general expression for the magnitude of the torque τ. Rewrite the answer found in Part A in terms of the magnitude of the magnetic dipole moment of the current loop m. Define the angle between the vector perpendicular to the plane of the coil and the magnetic field to be ϕ, noting that this angle is the complement of angle θ in Part A. Give your answer in terms of the magnetic moment mm, magnetic field B, and ϕ.arrow_forwardCalculate the electric and magnetic energy densities at thesurface of a 3-mm diameter copper wire carrying a 15-A current. The resistivity ofcopper is 1.68×10-8 Ω.m.Prob. 18, page 806, Ans: uE= 5.6 10-15 J/m3 uB= 1.6 J/m3arrow_forward
- A 15.8-mW laser puts out a narrow beam 2.0 mm in diameter.Suppose that the beam is in free space. What is the rms value of E in the beam? What isthe rms value of B in the beam?Prob. 28, page 834. Ans: Erms= 1380 V/m, Brms =4.59×10-6 Tarrow_forwardA 4.5 cm tall object is placed 26 cm in front of a sphericalmirror. It is desired to produce a virtual image that is upright and 3.5 cm tall.(a) What type of mirror should be used, convex, or concave?(b) Where is the image located?(c) What is the focal length of the mirror?(d) What is the radius of curvature of the mirror?Prob. 25, page 861. Ans: (a) convex, (b) di= -20.2 cm, i.e. 20.2 cm behind the mirror,(c) f= -90.55 cm, (d) r= -181.1 cm.arrow_forwardA series RCL circuit contains an inductor with inductance L=3.32 mH, and a generator whose rms voltage is 11.2 V. At a resonant frequencyof 1.25 kHz the average power delivered to the circuit is 26.9 W.(a) Find the value of the capacitance.(b) Find the value of the resistance.(c) What is the power factor of this circuit?Ans: C=4.89 μF, R=4.66 Ω, 1.arrow_forward
- A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.70 km/s in the +x-direction experiences a force of 2.06×10−16 N in the +y-direction, and an electron moving at 4.40 km/s in the −z-direction experiences a force of 8.10×10−16 N in the +y-direction. What is the magnitude of the magnetic force on an electron moving in the −y-direction at 3.70 km/s ? What is the direction of this the magnetic force? (in the xz-plane)arrow_forwardA particle with a charge of −5.20 nC is moving in a uniform magnetic field of B =−( 1.22 T )k^. The magnetic force on the particle is measured to be F=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the x component of the velocity of the particle.arrow_forwardIs it possible for average velocity to be negative?a. Yes, in cases when the net displacement is negative.b. Yes, if the body keeps changing its direction during motion.c. No, average velocity describes only magnitude and not the direction of motion.d. No, average velocity describes only the magnitude in the positive direction of motion.arrow_forward
- Tutorial Exercise An air-filled spherical capacitor is constructed with an inner-shell radius of 6.95 cm and an outer-shell radius of 14.5 cm. (a) Calculate the capacitance of the device. (b) What potential difference between the spheres results in a 4.00-μC charge on the capacitor? Part 1 of 4 - Conceptualize Since the separation between the inner and outer shells is much larger than a typical electronic capacitor with separation on the order of 0.1 mm and capacitance in the microfarad range, we expect the capacitance of this spherical configuration to be on the order of picofarads. The potential difference should be sufficiently low to avoid sparking through the air that separates the shells. Part 2 of 4 - Categorize We will calculate the capacitance from the equation for a spherical shell capacitor. We will then calculate the voltage found from Q = CAV.arrow_forwardI need help figuring out how to do part 2 with the information given in part 1 and putting it in to the simulation. ( trying to match the velocity graph from the paper onto the simulation to find the applied force graph) Using this simulation https://phet.colorado.edu/sims/cheerpj/forces-1d/latest/forces-1d.html?simulation=forces-1d.arrow_forwardI need help running the simulation to get the result needed.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning