
Physical Science
10th Edition
ISBN: 9780073513898
Author: Bill Tillery
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 2FFA
To determine
The significant differences and similarities between heat and temperature.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two gliders are set in motion on an air track. A light spring of force constant k is attached to the back end of the second glider. As shown in the figure below, the first glider, of mass m₁, moves to the right with a speed V₁, and the second glider, of mass m₂, moves more slowly to the right
with a speed, V2.
VI
m2
i
When m₁ collides with the spring attached to m2, the spring compresses by a distance xmax, and the gliders then move apart again. In terms of V1, V2, m₁, m2, and k, find the following. (Use any variable or symbol stated above as necessary.)
(a) speed v at maximum compression
V =
(b) the maximum compression Xmax
Xmax =
(c) the speed of each glider after m₁
V1f =
has lost contact with the spring (Use any variable or symbol stated above as necessary.)
V2f
As shown below, a bullet of mass m and speed v is fired at an initially stationary pendulum bob. The bullet goes through the bob, and exits with a speed of
pendulum bob will barely swing through a complete vertical circle? (Use the following as necessary: m, L, g, and M for the mass of the bob.)
2
The pendulum bob is attached to a rigid pole of length L and negligible mass. What is the minimum value of v such that the
V =
L
m
M
v/2
i
As shown in the figure, a billiard ball with mass m₂ is initially at rest on a horizontal, frictionless table. A second billiard ball with mass m₁ moving with a speed 2.00 m/s, collides with m2. Assume m₁ moves initially along the +x-axis. After the collision, m₁ moves with speed 1.00 m/s at an
angle of 0 = 48.0° to the positive x-axis. (Assume m₁ = 0.200 kg and m₂ = 0.300 kg.)
m₁
Before the collision
Vli
After the collision
Mi sin 9
Jif
"If cos
Vof COS
U2f
sin o
Mo
b
(a) Determine the speed (in m/s) of the 0.300 kg ball after the collision.
m/s
(b) Find the fraction of kinetic energy transferred away or transformed to other forms of energy in the collision.
|AKI
K;
Chapter 4 Solutions
Physical Science
Ch. 4 - 1. The Fahrenheit thermometer scale is
a. more...Ch. 4 - Prob. 2ACCh. 4 - Prob. 3ACCh. 4 - 4. External energy refers to the
a. energy that...Ch. 4 - Prob. 5ACCh. 4 - The specific heat of copper is 0.093 cal/gC, and...Ch. 4 - 7. The specific heat of water is 1.00 cal/gC°, and...Ch. 4 - Prob. 8ACCh. 4 - Prob. 9ACCh. 4 - Prob. 10AC
Ch. 4 - Prob. 11ACCh. 4 - Prob. 12ACCh. 4 - 13. The energy supplied to a system in the form of...Ch. 4 - Prob. 14ACCh. 4 - Prob. 15ACCh. 4 - Prob. 16ACCh. 4 - Prob. 17ACCh. 4 - Prob. 18ACCh. 4 - Prob. 19ACCh. 4 - Prob. 20ACCh. 4 - 21. The transfer of heat that takes place because...Ch. 4 - 22. Latent heat is “hidden” because it
a. goes...Ch. 4 - Prob. 23ACCh. 4 - 24. A heat engine is designed to
a. move heat from...Ch. 4 - 25. The work that a heat engine is able to...Ch. 4 - Prob. 26ACCh. 4 - Prob. 27ACCh. 4 - Prob. 28ACCh. 4 - 29. The cheese on a hot pizza takes a long time to...Ch. 4 - 30. The specific heat of copper is roughly three...Ch. 4 - Prob. 31ACCh. 4 - 32. Conduction best takes place in a
a. solid.
b....Ch. 4 - 33. Convection best takes place in a (an)
a....Ch. 4 - Prob. 34ACCh. 4 - Prob. 35ACCh. 4 - Prob. 36ACCh. 4 - Prob. 37ACCh. 4 - 38. At temperatures above freezing, the...Ch. 4 - Prob. 39ACCh. 4 - Prob. 40ACCh. 4 - Prob. 41ACCh. 4 - 42. The second law of thermodynamics tells us that...Ch. 4 - 43. The heat death of the universe in the future...Ch. 4 - 1. What is temperature? What is heat?
Ch. 4 - 2. Explain why most materials become less dense as...Ch. 4 - 3. Would the tight packing of more insulation,...Ch. 4 - 4. A true vacuum bottle has a double-walled,...Ch. 4 - 5. Why is cooler air found in low valleys on calm...Ch. 4 - 6. Why is air a good insulator?
Ch. 4 - 7. Explain the meaning of the mechanical...Ch. 4 - 8. What do people really mean when they say that a...Ch. 4 - 9. A piece of metal feels cooler than a piece of...Ch. 4 - 10. Explain how the latent heat of fusion and the...Ch. 4 - 11. What is condensation? Explain, on a molecular...Ch. 4 - 12. Which provides more cooling for a Styrofoam...Ch. 4 - 13. Explain why a glass filled with a cold...Ch. 4 - 14. Explain why a burn from 100°C steam is more...Ch. 4 - Briefly describe, using sketches as needed, how a...Ch. 4 - 16. Which has the greatest entropy: ice, liquid...Ch. 4 - 17. Suppose you use a heat engine to do the work...Ch. 4 - 1. Considering the criteria for determining if...Ch. 4 - Prob. 2FFACh. 4 - 3. Gas and plasma are phases of matter, yet gas...Ch. 4 - Prob. 4FFACh. 4 - 5. This chapter contains information about three...Ch. 4 - Prob. 6FFACh. 4 - 7. Explore the assumptions on which the “heat...Ch. 4 - Prob. 1IICh. 4 - Prob. 1PEBCh. 4 - Prob. 2PEBCh. 4 - Prob. 3PEBCh. 4 - 4. A 1.0 kg metal head of a geology hammer strikes...Ch. 4 - 5. A 60.0 kg person will need to climb a 10.0 m...Ch. 4 - 6. A 50.0 g silver spoon at 20.0°C is placed in a...Ch. 4 - 7. If the silver spoon placed in the coffee in...Ch. 4 - 8. How many minutes would be required for a 300.0...Ch. 4 - Prob. 9PEBCh. 4 - 10. A 1.00 kg block of ice at 0°C is added to a...Ch. 4 - Prob. 11PEBCh. 4 - Prob. 12PEBCh. 4 - Prob. 13PEBCh. 4 - 14. A heat engine converts 100.0 cal from a supply...Ch. 4 - Prob. 15PEB
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block with mass m₁ = 0.600 kg is released from rest on a frictionless track at a distance h₁ = 2.55 m above the top of a table. It then collides elastically with an object having mass m₂ = 1.20 kg that is initially at rest on the table, as shown in the figure below. h₁ իջ m m2 (a) Determine the velocities of the two objects just after the collision. (Assume the positive direction is to the right. Indicate the direction with the signs of your answers.) V1= m/s m/s (b) How high up the track does the 0.600-kg object travel back after the collision? m (c) How far away from the bottom of the table does the 1.20-kg object land, given that the height of the table is h₂ = 1.75 m? m (d) How far away from the bottom of the table does the 0.600-kg object eventually land? marrow_forwardAn estimated force-time curve for a baseball struck by a bat is shown in the figure below. Let F F(N) Fmax TÀ 0 t (ms) 0 la (a) the magnitude of the impulse delivered to the ball N.S (b) the average force exerted on the ball KN = 17,000 N, t = max a 1.5 ms, and t₁ = 2 ms. From this curve, determine the following.arrow_forwardThere are many well-documented cases of people surviving falls from heights greater than 20.0 m. In one such case, a 55.0 kg woman survived a fall from a 10th floor balcony, 29.0 m above the ground, onto the garden below, where the soil had been turned in preparation for planting. Because of the "give" in the soil, which the woman compressed a distance of 15.0 cm upon impact, she survived the fall and was only briefly hospitalized. (a) Ignoring air resistance, what was her impact speed with the ground (in m/s)? m/s (b) What was the magnitude of her deceleration during the impact in terms of g? g (c) Assuming a constant acceleration, what was the time interval (in s) during which the soil brought her to a stop? S (d) What was the magnitude of the impulse (in N⚫ s) felt by the woman during impact? N⚫s (e) What was the magnitude of the average force (in N) felt by the woman during impact? Narrow_forward
- Example Two charges, one with +10 μC of charge, and another with - 7.0 μC of charge are placed in line with each other and held at a fixed distance of 0.45 m. Where can you put a 3rd charge of +5 μC, so that the net force on the 3rd charge is zero?arrow_forward* Coulomb's Law Example Three charges are positioned as seen below. Charge 1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is - 6.0MC. What is the magnitude and the direction of the force on charge 2 due to charges 1 and 3? 93 kq92 F == 2 r13 = 0.090m 91 r12 = 0.12m 92 Coulomb's Constant: k = 8.99x10+9 Nm²/C² ✓arrow_forwardMake sure to draw a Free Body Diagram as wellarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning