Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 29E
To determine
An expression for the thrust of a model rocket’s engine required to accelerate a spacecraft from the rest on the ground to speed
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A cylinder with a piston contains 0.153 mol of
nitrogen at a pressure of 1.83×105 Pa and a
temperature of 290 K. The nitrogen may be
treated as an ideal gas. The gas is first compressed
isobarically to half its original volume. It then
expands adiabatically back to its original volume,
and finally it is heated isochorically to its original
pressure.
Part A
Compute the temperature at the beginning of the adiabatic expansion.
Express your answer in kelvins.
ΕΠΙ ΑΣΦ
T₁ =
?
K
Submit
Request Answer
Part B
Compute the temperature at the end of the adiabatic expansion.
Express your answer in kelvins.
Π ΑΣΦ
T₂ =
Submit
Request Answer
Part C
Compute the minimum pressure.
Express your answer in pascals.
ΕΠΙ ΑΣΦ
P =
Submit
Request Answer
?
?
K
Pa
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
Τ
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
Chapter 4 Solutions
Essential University Physics
Ch. 4.2 - A curved barrier lies on a horizontal tabletop, as...Ch. 4.2 - A nonzero net force acts on an object. Which of...Ch. 4.4 - A popular childrens book explains the...Ch. 4.5 - For each of the following situations, would the...Ch. 4.6 - The figure shows two blocks with two forces acting...Ch. 4.6 - (1) Would the answer to (a) in Example 4.5 change...Ch. 4 - Distinguish the Aristotelian and Galilean/New...Ch. 4 - A ball bounces off a wall with the same speed it...Ch. 4 - We often use the term inertia to describe human...Ch. 4 - Does a body necessarily move in the direction of...
Ch. 4 - A truck crashes into a stalled car. A student...Ch. 4 - A barefoot astronaut kicks a ball, hard, across a...Ch. 4 - In paddling a canoe, you push water backward with...Ch. 4 - Is it possible for a nonzero net force to act on...Ch. 4 - As your plane accelerates down the runway, you...Ch. 4 - A driver tells passengers to buckle their...Ch. 4 - Section 4.2 Newtons First and Second Laws A subway...Ch. 4 - Prob. 12ECh. 4 - A small plane accelerates down the runway at 7.2...Ch. 4 - A car leaves the road traveling at 110 km/h and...Ch. 4 - Kinesin is a motor protein responsible for moving...Ch. 4 - Starting from rest and undergoing constant...Ch. 4 - In an egg-dropping contest, a student encases an...Ch. 4 - In a front-end collision, a 1300-kg car with...Ch. 4 - Show that the units of acceleration can be written...Ch. 4 - Your spaceship crashes on one of the Suns planets....Ch. 4 - Your friend can barely lift a 35-kg concrete block...Ch. 4 - A cereal box says net weight 340 grams. Whats the...Ch. 4 - Youre a safely engineer for a bridge spanning the...Ch. 4 - The gravitational acceleration at the...Ch. 4 - A 50-kg parachutist descends at a steady 40 km/h....Ch. 4 - A 930-kg motorboat accelerates away from a dock at...Ch. 4 - An elevator accelerates downward at 2.4 m/s2. What...Ch. 4 - At 560 metric tons, the Airbus A-380 is the worlds...Ch. 4 - Find an expression for the thrust (force) of a...Ch. 4 - You slop into an elevator, and it accelerates to a...Ch. 4 - What upward gravitational force does a 5600-kg...Ch. 4 - Your friends mass is 65 kg. If she jumps off a...Ch. 4 - What force is necessary to stretch a spring 48 cm,...Ch. 4 - A 35-N force is applied to a spring with spring...Ch. 4 - A spring with spring constant k = 340 N/m is used...Ch. 4 - Prob. 36ECh. 4 - Prob. 37ECh. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - Prob. 40ECh. 4 - Prob. 41ECh. 4 - Example 4.3: In the 2015 film The Martian, actor...Ch. 4 - Prob. 43ECh. 4 - A 166-g hockey puck is gliding across the ice at...Ch. 4 - An airplane encounters sudden turbulence, and you...Ch. 4 - A 74-kg tree surgeon rides a cherry picker lift to...Ch. 4 - A dancer executes a vertical jump during which the...Ch. 4 - Find expressions for the force needed to bring an...Ch. 4 - An elevator moves upward at 5.2 m/s. Whats its...Ch. 4 - A 2.50-kg object is moving along the x-axis at...Ch. 4 - Blocks of 1.0, 2.0, and 3.0 kg are lined up on a...Ch. 4 - A child pulls an 11-kg wagon with a horizontal...Ch. 4 - Biophysicists use an arrangement of laser beams...Ch. 4 - A force F is applied to a spring of spring...Ch. 4 - A 22(M)-kg airplane pulls two gliders, the first...Ch. 4 - A biologist is studying the growth of rats on the...Ch. 4 - A small car, with mass 945 kg, is stuck on...Ch. 4 - A 2.0-kg mass and a 3.0-kg mass are on a...Ch. 4 - Youre an automotive engineer designing the crumple...Ch. 4 - Frogs tongues dart out to catch insects, with...Ch. 4 - Two large crates, with masses 640 kg and 490 kg,...Ch. 4 - Your engineering firm is asked to specify the...Ch. 4 - With its fuel tanks half full, an F-35A jet...Ch. 4 - Two springs have the same unstretched length but...Ch. 4 - Although we usually write Newtons second law for...Ch. 4 - A railroad car is being pulled beneath a grain...Ch. 4 - A block 20% more massive than you hangs from a...Ch. 4 - Figure 4.27 shows vertical accelerometer data from...Ch. 4 - A hockey stick is in contact with a 165-g puck for...Ch. 4 - After parachuting through the Martian atmosphere,...Ch. 4 - Your airplane is caught in a brief, violent...Ch. 4 -
A hot-air balloon and its basket are accelerating...Ch. 4 - Two masses are joined by a massless string. A 30-N...Ch. 4 - A mass M hangs from a uniform rope of length L and...Ch. 4 - Jerk is the rate of change of acceleration, and...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...Ch. 4 - Laptop computers are equipped with accelerometers...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- ■ Review | Constants A cylinder with a movable piston contains 3.75 mol of N2 gas (assumed to behave like an ideal gas). Part A The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in temperature. ΜΕ ΑΣΦ AT = Submit Request Answer Part B ? K Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while remaining at constant pressure. Calculate the temperature change. AT = Π ΑΣΦ Submit Request Answer Provide Feedback ? K Nextarrow_forward4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC) into a rectangle, bringing them together from an initial situation where they were all an infinite distance away from each other. Find the electric potential at point "A" (marked by the X) and tell me how much work it would require to bring a +10.0 μC charge to point A if it started an infinite distance away (assume that the other three charges remains fixed). 300 mm -4 UC "A" 0.400 mm +6 UC +3 UC 5. It's Friday night, and you've got big party plans. What will you do? Why, make a capacitor, of course! You use aluminum foil as the plates, and since a standard roll of aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by 30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125 mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If you connect it to a 12 V battery, how much charge is stored on either plate? =arrow_forwardLearning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forward
- A-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forwardYour answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward
- 4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forwardplease solve and answer the question correctly. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY