![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_largeCoverImage.gif)
Concept explainers
Find the force in each bar and mention the force is tension or compression of the bars in the truss.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Assumptions:
- Consider the state of bars as tension (T) where the force is pulling the bar and as compression (C) where the force is pushing the bar.
- The sign of the force in the bar is positive when the force is in tension and negative when the force is in compression.
- Consider the force indicating right side as positive and left side as negative in horizontal components of forces.
- Consider the force indicating upward is taken as positive and downward as negative in vertical components of forces.
- Consider clockwise moment as negative and anti-clock wise moment as positive wherever applicable.
Show the free-body diagram of the entire truss as in Figure 1.
Find the vertical reaction at point G by taking moment about point A.
Find the vertical reaction at point A by resolving the vertical component of forces.
Find the horizontal reaction at point A by resolving the horizontal component of forces.
Consider the joint G;
Show the forces acting at the joint G as in Figure 2.
Resolve the vertical component of forces.
Use the proportion:
Resolve the horizontal component of forces.
Consider the joint A;
Show the forces acting at the joint A as in Figure 3.
Resolve the vertical component of forces.
Use the proportion:
Resolve the horizontal component of forces.
Consider the joint H;
Show the forces acting at the joint H as in Figure 4.
Resolve the horizontal component of forces.
Resolve the vertical component of forces.
Use the proportion:
Substitute
Substitute
Solve the Equation (3) and (4);
Consider the joint B;
Show the forces acting at the joint B as in Figure 5.
Resolve the vertical component of forces.
Use the proportion:
Resolve the horizontal component of forces.
Consider the joint F;
Show the forces acting at the joint F as in Figure 6.
Resolve the vertical component of forces.
Use the proportion:
Resolve the horizontal component of forces.
Consider the joint I;
Show the forces acting at the joint I as in Figure 7.
Resolve the horizontal component of forces.
Resolve the vertical component of forces.
Use the proportion:
Substitute
Substitute
Solve the Equation (7) and (8);
Consider the joint C;
Show the forces acting at the joint C as in Figure 8.
Resolve the vertical component of forces.
Use the proportion:
Resolve the horizontal component of forces.
Consider the joint E;
Show the forces acting at the joint E as in Figure 9.
Resolve the vertical component of forces.
Use the proportion:
Show the forces in the bars of the truss as in Figure 10.
Want to see more full solutions like this?
Chapter 4 Solutions
Fundamentals of Structural Analysis
- Consider the three cases shown below, in which a soil column is subjected to different water heads (similar set-upDarby’s experiment in the reader). Using the tables provided, establish the pressure, elevation, and total heads ateach location, considering that the datum is:a) at the headwater, andb) at the tailwater.c) What was the effect of assuming a different datum on the i) pressure, ii) elevation, and iii) total heads?d) In the schematic for each case, draw an arrow indicating the direction of water flow inside the soil.e) What is the hydraulic gradient across the soil in each case?f) If the soil permeability and cross-sectional area of the cylinder remains constant across the different cases, whichone leads to the largest flow rate q? Which one has the lowest flow rate?g) What assumptions were necessary for you to answer these questions?arrow_forwardFor given distributed loads, see figures below, determine resultant and moments around load ends (points A and B). Assume p = 2kN/m.arrow_forwardA permeability test apparatus of diameter 82.5 mm contains a column of fine sand 460 mm long. When water flows through it under a constant head at a rate of 191 cm3/minute, the loss of head between two points 250 mm apart is 380 mm. Calculate the coefficient of permeability of the fine sand. If falling head test is made on the same sample using a standpipe of diameter of 30 mm, in what time will the water level in standpipe fall from 1560 mm to 1066 mm above outflow level.arrow_forward
- Computation must be completeFor the given cantilever beam shown in the figure below,a. Draw the shear and moment diagram using service loads.b. Determine the critical design moment using Working Stress Design (Ma) load combinations.c. Draw the shear and moment diagram using factored loads.d. Determine the critical design moment using Strength Design (Mu) load combinations, use NSCP2015.e. For the given cross-section of the beam, give the reason why the reinforcement is at the topportion of the beam section?arrow_forwardLAB: FORCE AND FORCE-RELATED VARIABLES ASSIGNMENT INSTRUCTIONS INSTRUCTIONS Lab assignments are intended to give you some ‘hands on' experience in applying the concepts introduced in the course text. They are designed to get you out of your classroom or office and develop the skills of designing experiments and collecting data, and then performing calculations, evaluating the results, and communicating your findings. Labs are more than just number crunching - they are about reflecting on what is both practical and technically sound engineering problem-solving. For each problem below, address the scenario presented and develop engineering solutions. Communicate your results using drawings, pictures, and discussion, supported by calculations developed using the Microsoft Equation Editor or similar tool. Submit your lab report in a single pdf file uploaded to the location provided in Canvas before the due date/time indicated. Each problem should be treated as a micro-report with a problem…arrow_forwardHow can a construction estimator gain experience to better judge appropriate contingency amounts?arrow_forward
- What are the potential risks and rewards of including a higher or lower contingency amount in a construction estimate?arrow_forwardDraw moment and shear diagramsarrow_forwardFIND THE INTERNAL MISSING ANGLES AND MISSING SIDESOF A 90° RIGHT TRIANGLE WITH A HEIGHT OF 96 AND A BASE OF 48.DRAW A PROPORTIONAL SKETCH OF THE TRIANGLE, IDENTIFY GIVEN INFORMATIONAND LABEL MISSING INFORMATION. WHAT IS AREA TO THE NEAREST SQ. FT.?arrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
![Text book image](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)