
Concept explainers
Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.) In parts (a)-(f), v1, ..., vp are
- a. The set of all linear combinations of v1, ..., vp is a vector space.
- b. If {v1, ..., vp−1} spans V, then S spans V.
- c. If {v1, ..., vp−1} is linearly independent, then so is S.
- d. If S is linearly independent, then S is a basis for V.
- e. If Span S = V, then some subset of S is a basis for V.
- f. If dim V = p and Span, S = V, then S cannot be linearly dependent.
- g. A plane in ℝ3 is a two-dimensional subspace.
- h. The nonpivot columns of a matrix are always linearly dependent.
- i. Row operations on a matrix A can change the linear dependence relations among the rows of A.
- j. Row operations on a matrix can change the null space.
- k. The rank of a matrix equals the number of nonzero rows.
- l. If an m × n matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of Ax = 0 is m − k.
- m. If B is obtained from a matrix A by several elementary row operations, then rank B = rank A.
- n. The nonzero rows of a matrix A form a basis for Row A.
- ○. If matrices A and B have the same reduced echelon form, then Row A = Row B.
- p. If H is a subspace of ℝ3, then there is a 3 × 3 matrix A such that H = Col A.
- q. If A is m × n and rank A = m, then the linear transformation x ↦ Ax is one-to-one.
- r. If A is m × n and the linear transformation x ↦ Ax is onto, then rank A = m.
- s. A change-of-coordinates matrix is always invertible.
- t. If B = {b1, ..., bn} and C = {c1, ..., cn} are bases for a vector space V, then the jth column of the change-of-coordinates matrix
is the coordinate vector [cj]B.
a.

To find: Whether the statement “The set of all linear combinations of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here, the given vectors are
The span {
Thus, the linear combinations of
Hence, the statement is true.
b.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The set S is
It is given that the set
That is, every element in the vector space
Here, the set
The smaller set
If the vector space V is spanned by
Hence, the statement is true.
c.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If
Therefore, it does not imply that S is linearly independent.
Hence, the statement is false.
d.

To find: Whether the statement “If S is linearly independent then S is a basis for V” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
A set of vectors
1. The set of vectors
2. The set
It can be seen that the second condition is not satisfied.
Hence, the statement is false.
e.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that the vector space V is spanned by S, which is nonzero set.
Suppose the set S is linearly independent then, the set S form a basis for V.
Suppose the set S is linearly dependent then, some subset of S linearly independent and which spans V.
That is, some subset of S form a basis for V.
Hence, the statement is true.
f.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that
Here,
Which implies the
Hence, the statement is false.
g.

To find: Whether the statement “A plane in
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Every plane in
Sometimes plane in
Hence, the statement is false.
h.

To find: Whether the statement “The non-pivot columns of a matrix are always linearly dependent” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Consider the matrix
Here non-pivot columns are linearly independent.
Hence, the statement is false.
i.

To find: Whether the statement “Row operations on a matrix A can change the linear dependence relations among the rows of A” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Row operations on matrix
Hence, the statement is true.
j.

To find: Whether the statement “Row operations on a matrix can change the null space” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Row operations do not change the solution set of the system
Therefore, row operations do not change the null space.
Hence, the statement is false.
k.

To find: Whether the statement “The rank of a matrix equals the number of nonzero rows” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The rank of a matrix A is the dimension of the column space of A.
The dimension of column space of A is the number of pivot columns in A.
Therefore, the rank of matrix equals the number of pivot columns.
Consider the matrix
The above matrix has 2 rows but rank of the matrix is 1.
Hence, the statement is false.
l.

To find: Whether the statement “If an
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If U has k nonzero rows then,
According to the Rank Theorem, the rank of an
Hence, the statement is false.
m.

To find: Whether the statement “If B is obtained from a matrix A by several elementary row operations, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Elementary row operations does not change the number of pivot columns and hence, does not change the rank of a matrix.
Therefore, the rank of matrix B will be same as the rank of matrix A.
Hence, the statement is true.
n.

To find: Whether the statement “The nonzero rows of a matrix A form a basis for Row A” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
To form a basis for A, the rows have to span A and should also be linearly independent.
The nonzero rows of a matrix A span Row A but that does not guarantee that they are linearly independent.
Hence, the statement is false.
o.

To find: Whether the statement “If matrices A and B have the same reduced echelon form, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The nonzero rows of the echelon form of a matrix, form a basis for the row space of that matrix.
If the echelon form for two matrices is same, then the basis for the row spaces is also same.
Since, row spaces are vector spaces and if two vector spaces have same basis, then the vector spaces are same.
Hence, the statement is true.
p.

To find: Whether the statement “If H is a subspace of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
If H is a zero, 1, 2, or 3 dimensional subspace of
The basis of H will then be in the column space of A.
Therefore,
Hence, the statement is true.
q.

To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Here the matrix A is linear transformation from
The transformation
Here, rank of the matrix is A thus, by the rank nullity theorem null space of
Hence, the statement is false.
r.

To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here the matrix A is linear transformation from
If the transformation is onto then,
The rank of a matrix A is the dimension of the column space of A.
Therefore, the rank of A is m.
Hence, the statement is true.
s.

To find: Whether the statement “A change-of-coordinate matrix is always invertible” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The columns of
The matrix
Hence, the statement is true.
t.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The jth column of the change-of-coordinates matrix
Hence, the statement is false.
Want to see more full solutions like this?
Chapter 4 Solutions
Linear Algebra and Its Applications (5th Edition)
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Pre-Algebra Student Edition
Elementary Statistics
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
- How much is the circumference of a circle whose diameter is 7 feet?C =π darrow_forwardHow to solve 2542/64.132arrow_forwardAssume that you fancy polynomial splines, while you actually need ƒ(t) = e²/3 – 1 for t€ [−1, 1]. See the figure for a plot of f(t). Your goal is to approximate f(t) with an inter- polating polynomial spline of degree d that is given as sa(t) = • Σk=0 Pd,k bd,k(t) so that sd(tk) = = Pd,k for tk = −1 + 2 (given d > 0) with basis functions bd,k(t) = Σi±0 Cd,k,i = • The special case of d 0 is trivial: the only basis function b0,0 (t) is constant 1 and so(t) is thus constant po,0 for all t = [−1, 1]. ...9 The d+1 basis functions bd,k (t) form a ba- sis Bd {ba,o(t), ba,1(t), bd,d(t)} of the function space of all possible sα (t) functions. Clearly, you wish to find out, which of them given a particular maximal degree d is the best-possible approximation of f(t) in the least- squares sense. _ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 function f(t) = exp((2t)/3) - 1 to project -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5…arrow_forward
- An image processor considered a 750×750 pixels large subset of an image and converted it into gray-scale, resulting in matrix gIn - a false-color visualization of gIn is shown in the top-left below. He prepared a two-dim. box filter f1 as a 25×25 matrix with only the 5×5 values in the middle being non-zero – this filter is shown in the top-middle position below. He then convolved £1 with itself to get £2, before convolving £2 with itself to get f3. In both of the steps, he maintained the 25×25 size. Next, he convolved gIn with £3 to get gl. Which of the six panels below shows g1? Argue by explaining all the steps, so far: What did the image processor do when preparing ₤3? What image processing operation (from gin to g1) did he prepare and what's the effect that can be seen? Next, he convolved the rows of f3 with filter 1/2 (-1, 8, 0, -8, 1) to get f4 - you find a visualization of filter f 4 below. He then convolved gIn with f4 to get g2 and you can find the result shown below. What…arrow_forward3ur Colors are enchanting and elusive. A multitude of color systems has been proposed over a three-digits number of years - maybe more than the number of purposes that they serve... - Everyone knows the additive RGB color system – we usually serve light-emitting IT components like monitors with colors in that system. Here, we use c = (r, g, b) RGB with r, g, bЄ [0,1] to describe a color c. = T For printing, however, we usually use the subtractive CMY color system. The same color c becomes c = (c, m, y) CMY (1-c, 1-m, 1-y) RGB Note how we use subscripts to indicate with coordinate system the coordinates correspond to. Explain, why it is not possible to find a linear transformation between RGB and CMY coordinates. Farbenlehr c von Goethe Erster Band. Roſt einen Defte mit fergen up Tübingen, is et 3. Cotta'fden Babarblung. ISIO Homogeneous coordinates give us a work-around: If we specify colors in 4D, instead, with the 4th coordinate being the homogeneous coordinate h so that every actual…arrow_forwardCan someone provide an answer & detailed explanation please? Thank you kindly!arrow_forward
- Given the cubic function f(x) = x^3-6x^2 + 11x- 6, do the following: Plot the graph of the function. Find the critical points and determine whether each is a local minimum, local maximum, or a saddle point. Find the inflection point(s) (if any).Identify the intervals where the function is increasing and decreasing. Determine the end behavior of the graph.arrow_forwardGiven the quadratic function f(x) = x^2-4x+3, plot the graph of the function and find the following: The vertex of the parabola .The x-intercepts (if any). The y-intercept. Create graph also before solve.arrow_forwardwhat model best fits this dataarrow_forward
- Round as specified A) 257 down to the nearest 10’s place B) 650 to the nearest even hundreds, place C) 593 to the nearest 10’s place D) 4157 to the nearest hundreds, place E) 7126 to the nearest thousand place arrow_forwardEstimate the following products in two different ways and explain each method  A) 52x39 B) 17x74 C) 88x11 D) 26x42arrow_forwardFind a range estimate for these problems A) 57x1924 B) 1349x45 C) 547x73951arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning


