
Concept explainers
Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain why or give a counterexample that shows why the statement is not true in every case.) In parts (a)-(f), v1, ..., vp are
- a. The set of all linear combinations of v1, ..., vp is a vector space.
- b. If {v1, ..., vp−1} spans V, then S spans V.
- c. If {v1, ..., vp−1} is linearly independent, then so is S.
- d. If S is linearly independent, then S is a basis for V.
- e. If Span S = V, then some subset of S is a basis for V.
- f. If dim V = p and Span, S = V, then S cannot be linearly dependent.
- g. A plane in ℝ3 is a two-dimensional subspace.
- h. The nonpivot columns of a matrix are always linearly dependent.
- i. Row operations on a matrix A can change the linear dependence relations among the rows of A.
- j. Row operations on a matrix can change the null space.
- k. The rank of a matrix equals the number of nonzero rows.
- l. If an m × n matrix A is row equivalent to an echelon matrix U and if U has k nonzero rows, then the dimension of the solution space of Ax = 0 is m − k.
- m. If B is obtained from a matrix A by several elementary row operations, then rank B = rank A.
- n. The nonzero rows of a matrix A form a basis for Row A.
- ○. If matrices A and B have the same reduced echelon form, then Row A = Row B.
- p. If H is a subspace of ℝ3, then there is a 3 × 3 matrix A such that H = Col A.
- q. If A is m × n and rank A = m, then the linear transformation x ↦ Ax is one-to-one.
- r. If A is m × n and the linear transformation x ↦ Ax is onto, then rank A = m.
- s. A change-of-coordinates matrix is always invertible.
- t. If B = {b1, ..., bn} and C = {c1, ..., cn} are bases for a vector space V, then the jth column of the change-of-coordinates matrix
is the coordinate vector [cj]B.
a.

To find: Whether the statement “The set of all linear combinations of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here, the given vectors are
The span {
Thus, the linear combinations of
Hence, the statement is true.
b.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The set S is
It is given that the set
That is, every element in the vector space
Here, the set
The smaller set
If the vector space V is spanned by
Hence, the statement is true.
c.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If
Therefore, it does not imply that S is linearly independent.
Hence, the statement is false.
d.

To find: Whether the statement “If S is linearly independent then S is a basis for V” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
A set of vectors
1. The set of vectors
2. The set
It can be seen that the second condition is not satisfied.
Hence, the statement is false.
e.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that the vector space V is spanned by S, which is nonzero set.
Suppose the set S is linearly independent then, the set S form a basis for V.
Suppose the set S is linearly dependent then, some subset of S linearly independent and which spans V.
That is, some subset of S form a basis for V.
Hence, the statement is true.
f.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is true.
Explanation of Solution
It is given that
Here,
Which implies the
Hence, the statement is false.
g.

To find: Whether the statement “A plane in
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Every plane in
Sometimes plane in
Hence, the statement is false.
h.

To find: Whether the statement “The non-pivot columns of a matrix are always linearly dependent” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Consider the matrix
Here non-pivot columns are linearly independent.
Hence, the statement is false.
i.

To find: Whether the statement “Row operations on a matrix A can change the linear dependence relations among the rows of A” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Row operations on matrix
Hence, the statement is true.
j.

To find: Whether the statement “Row operations on a matrix can change the null space” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Row operations do not change the solution set of the system
Therefore, row operations do not change the null space.
Hence, the statement is false.
k.

To find: Whether the statement “The rank of a matrix equals the number of nonzero rows” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The rank of a matrix A is the dimension of the column space of A.
The dimension of column space of A is the number of pivot columns in A.
Therefore, the rank of matrix equals the number of pivot columns.
Consider the matrix
The above matrix has 2 rows but rank of the matrix is 1.
Hence, the statement is false.
l.

To find: Whether the statement “If an
Answer to Problem 1SE
The statement is false.
Explanation of Solution
If U has k nonzero rows then,
According to the Rank Theorem, the rank of an
Hence, the statement is false.
m.

To find: Whether the statement “If B is obtained from a matrix A by several elementary row operations, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Elementary row operations does not change the number of pivot columns and hence, does not change the rank of a matrix.
Therefore, the rank of matrix B will be same as the rank of matrix A.
Hence, the statement is true.
n.

To find: Whether the statement “The nonzero rows of a matrix A form a basis for Row A” is true or false.
Answer to Problem 1SE
The statement is false.
Explanation of Solution
To form a basis for A, the rows have to span A and should also be linearly independent.
The nonzero rows of a matrix A span Row A but that does not guarantee that they are linearly independent.
Hence, the statement is false.
o.

To find: Whether the statement “If matrices A and B have the same reduced echelon form, then
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The nonzero rows of the echelon form of a matrix, form a basis for the row space of that matrix.
If the echelon form for two matrices is same, then the basis for the row spaces is also same.
Since, row spaces are vector spaces and if two vector spaces have same basis, then the vector spaces are same.
Hence, the statement is true.
p.

To find: Whether the statement “If H is a subspace of
Answer to Problem 1SE
The statement is true.
Explanation of Solution
If H is a zero, 1, 2, or 3 dimensional subspace of
The basis of H will then be in the column space of A.
Therefore,
Hence, the statement is true.
q.

To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is false.
Explanation of Solution
Here the matrix A is linear transformation from
The transformation
Here, rank of the matrix is A thus, by the rank nullity theorem null space of
Hence, the statement is false.
r.

To find: Whether the statement “If A is
Answer to Problem 1SE
The statement is true.
Explanation of Solution
Here the matrix A is linear transformation from
If the transformation is onto then,
The rank of a matrix A is the dimension of the column space of A.
Therefore, the rank of A is m.
Hence, the statement is true.
s.

To find: Whether the statement “A change-of-coordinate matrix is always invertible” is true or false.
Answer to Problem 1SE
The statement is true.
Explanation of Solution
The columns of
The matrix
Hence, the statement is true.
t.

To find: Whether the statement “If
Answer to Problem 1SE
The statement is false.
Explanation of Solution
The jth column of the change-of-coordinates matrix
Hence, the statement is false.
Want to see more full solutions like this?
Chapter 4 Solutions
Linear Algebra and Its Applications (5th Edition)
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Pre-Algebra Student Edition
Elementary Statistics
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
- Draw the image of the following figure after a dilation centered at the origin with a scale factor of 14 退 14 12- 10 5- + Z 6 的 A X 10 12 14 16 18 G min 3 5arrow_forwardkofi makes a candle as a gift for his mom. The candle is a cube with a volume of 8/125 ft cubed. Kofi wants to paint each face of the candle exepct for the bottom. what is the area he will paint?arrow_forward10 6 9. 8 -7- 6. 5. 4- 3. 2 1- -1 0 -1 2 3 4 ·10 5 6 7 00 8 6 10arrow_forward
- Week 3: Mortgages and Amortiza X + rses/167748/assignments/5379530?module_item_id=23896312 11:59pm Points 10 Submitting an external tool Gider the following monthly amortization schedule: Payment # Payment Interest Debt Payment Balance 1 1,167.34 540.54 626.80 259,873.20 2 1,167.34 539.24 628.10 259,245.10 3 1,167.34 With the exception of column one, all amounts are in dollars. Calculate the annual interest rate on this loa Round your answer to the nearest hundredth of a percent. Do NOT round until you calculate the final answer. * Previous a Earrow_forwardCafé Michigan's manager, Gary Stark, suspects that demand for mocha latte coffees depends on the price being charged. Based on historical observations, Gary has gathered the following data, which show the numbers of these coffees sold over six different price values: Price Number Sold $2.70 765 $3.50 515 $2.00 990 $4.30 240 $3.10 325 $4.00 475 Using simple linear regression and given that the price per cup is $1.85, the forecasted demand for mocha latte coffees will be cups (enter your response rounded to one decimal place).arrow_forwardGiven the correlation coefficient (r-value), determine the strength of the relationship. Defend your answersarrow_forward
- ??!!arrow_forwardrections: For problem rough 3, read each question carefully and be sure to show all work. 1. Determine if 9(4a²-4ab+b²) = (6a-3b)² is a polynomial identity. 2. Is (2x-y) (8x3+ y³) equivalent to 16x4-y4? 3. Find an expression that is equivalent to (a - b)³. Directions: For problems 4 and 5, algebraically prove that the following equations are polynomial identities. Show all of your work and explain each step. 4. (2x+5)² = 4x(x+5)+25 5. (4x+6y)(x-2y)=2(2x²-xy-6y²)arrow_forwardName: Mussels & bem A section of a river currently has a population of 20 zebra mussels. The population of zebra mussels increases 60 % each month. What will be the population of zebra mussels after 2 years? 9 10 # of months # of mussels 1 2 3 4 5 6 7 8 o Graph your data. Remember to title your graph. What scale should be used on the y-axis? What scale should be used on the x-axis? Exponential Growth Equation y = a(1+r)*arrow_forward
- In a national park, the current population of an endangered species of bear is 80. Each year, the population decreases by 10%. How can you model the population of bears in the park? # of years # of bears 9 10 2 3 4 5 6 7 8 ° 1 Graph your data. Remember to title your graph. What scale should be used on the y-axis? What scale should be used on the x-axis? SMOKY 19 OUNTAINS NATIONAL Exponential Decay Equation y = a(1-r)* PARKarrow_forwardOn Feb. 8, this year, at 6am in the morning all UiB meteorology professors met to discuss a highly unfortunate and top-urgent crisis: Their most precious instrument, responsible for measuring the air temperature hour-by- hour, had failed - what if the Bergen public would find out? How would they plan their weekend without up-to-date air temperature readings? Silent devastation - and maybe a hint of panic, also - hung in the room. Apprentice Taylor, who - as always - was late to the meeting, sensed that this was his chance to shine! Could they fake the data? At least for some hours (until the measurements would work again)? He used to spend a lot of time online and thus knew the value of fake data, especially when it spread fast! He reminded the crying professors of a prehistoric project with the title "Love your derivatives as you love yourself!" - back then, they had installed top-modern technology that not only measured the air temperature itself, but also its 1st, 2nd, 3rd, 4th, and…arrow_forwardConsider a forest where the population of a particular plant species grows exponentially. In a real-world scenario, we often deal with systems where the analytical function describing the phenomenon is not available. In such cases, numerical methods come in handy. For the sake of this task, however, you are provided with an analytical function so that you can compare the results of the numerical methods to some ground truth. The population P(t) of the plants at time t (in years) is given by the equation: P(t) = 200 0.03 t You are tasked with estimating the rate of change of the plant population at t = 5 years using numerical differentiation methods. First, compute the value of P'(t) at t = 5 analytically. Then, estimate P'(t) at t = 5 years using the following numerical differentiation methods: ⚫ forward difference method (2nd-order accurate) 3 ⚫ backward difference method (2nd-order accurate) ⚫ central difference method (2nd-order accurate) Use h = 0.5 as the step size and round all…arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning


