Review Question 4.1 When does a vector have a positive scalar component? When does a vector have a negative scalar component?
The condition under which a vector has a positive scalar component and a negative scalar component.
Answer to Problem 1RQ
Solution:
When the vector component is in the positive direction of the axis, the scalar component is positive.
When the vector component is in the negative direction of the axis, the scalar component is negative.
Explanation of Solution
Introduction:
The scalar component of vector is determined by the x-axis and the y-axis, which are perpendicular to each other. There is no need to use the vector component of
Explanation:
Consider the first case, when a vector is in the positive x-direction,
The following steps are used to draw the diagram,
(1) Draw an arrow that represents the vector
(2) Now, draw the x-axis and the y-axis, which are perpendicular to each other.
(3) Resolve the vector into components.
Here,
Resolve the magnitude of force
And,
Therefore, when the vector component is in the positive direction of the axis, the scalar component is positive.
Consider the second case, when a vector is in the negative x-direction,
Here,
Find the values of the scalar component as,
And,
Suppose
Here, the negative sign shows the direction of the vector.
Therefore, when the vector component is in the negative direction of the axis, the scalar component is negative.
Conclusion:
Thus, if the vector component is in the positive direction of the axis, then the scalar component is positive and, if the vector component is in the negative direction of the axis, the scalar component is negative.
Want to see more full solutions like this?
Chapter 4 Solutions
College Physics
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Microbiology: An Introduction
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
Chemistry: A Molecular Approach (4th Edition)
Microbiology with Diseases by Body System (5th Edition)
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- look at answer show all work step by steparrow_forwardLook at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning