
Concept explainers
The (aq) designation listed after a solute indicates the process of hydration. Using KBr(aq) and C2H5OH(aq) as your examples, explain the process of hydration for soluble ionic compounds and for soluble covalent compounds.

Interpretation: The process of hydration for soluble ionic compounds and soluble covalent compounds with
Concept Introduction: When an ionic compound is dissolved in water, the positive ends of the water molecules are attracted to the negative charged ions and that negative ends are attracted to the positive charged ions. This process is called as hydration.
Answer to Problem 1RQ
Answer
Soluble ionic compounds have to tendency to breakup into their positive and negatively charged ions when they are dissolved into solution.
In
In the hydration process for ions, the partial negative end of the polar water molecules surrounds and stabilizes the cations in the solution. The water molecules present here would align themselves in such a way that the oxygen end of water aligns with the
In the case of
This is assumption when an aqueous solution (aq) is placed after an ionic compound.
Soluble covalent compounds are that compound that doesn’t have to tendency to break into ions when they are dissolved in solution.
Consider,
The hydration process for polar covalent solutes takes place when the covalent solutes and solvents align themselves such that their opposite charged parts attract each other.
The partial negative end of
This is the hydration process for polar covalent compounds. This is assumption when an aqueous solution (aq) is placed after an ionic compound.
It is difficult to predict the partial negative ends and partial positive ends of polar covalent compounds.
Explanation of Solution
Explanation
To explain the process of hydration in soluble ionic compounds
The process of hydration can be defined as dissolution of ionic compound in water, where
the positive ends of the water molecules are attracted to the negative charged ions and that negative ends are attracted to the positive charged ions.
When an ionic compound that is soluble in water can break apart into their ions upon dissolution such ionic compounds are called as soluble ionic compounds.
Taking the example of
The dissolution of
The equation can be given as,
In the hydration process for ions, the partial negative end of the polar water molecules surrounds and stabilizes the cations in the solution. The water molecules present here would align themselves in such a way that the oxygen end of water aligns with the
In the case of
This is assumption when an aqueous solution (aq) is placed after an ionic compound.
The separation of ions that are placed in solution is surrounded by the water that is permitable. There is an enthalpy change. The enthalpy change for this process is called as hydration enthalpy.
When a compound is made to get soluble in water, there is no break apart into their ions upon dissolution such ionic compounds are called as soluble covalent compounds.
To explain the process of hydration in soluble covalent compound
Soluble covalent compounds are that compound that doesn’t have to tendency to break into ions when they are dissolved in solution.
Consider,
The hydration process for polar covalent solutes takes place when the covalent solutes and solvents align themselves such that their opposite charged parts attract each other.
The partial negative end of
This is the hydration process for polar covalent compounds. This is assumption when an aqueous solution (aq) is placed after an ionic compound.
It is difficult to predict the partial negative ends and partial positive ends of polar covalent compounds.
The concept of hydration of soluble ionic and covalent compounds were explained with
Want to see more full solutions like this?
Chapter 4 Solutions
CHEMISTRY,AP EDITION-W/ACCESS (HS)
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning





