Physics Fundamentals
Physics Fundamentals
2nd Edition
ISBN: 9780971313453
Author: Vincent P. Coletta
Publisher: PHYSICS CURRICULUM+INSTRUCT.INC.
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4, Problem 1Q
To determine

The force according to Newton, which is needed to produce the horizontal component of an arrow’s velocity.

Expert Solution & Answer
Check Mark

Answer to Problem 1Q

The horizontal component of an arrow’s velocity is derived from the force applied to the arrow by the bowstring.

Explanation of Solution

Introduction:

According to Newton’s first law, every object continues to be at rest or in the state of uniform motion in a straight line unless an external unbalanced force acts on it.

When an arrow is launched using a bow, the bowstring is pulled, so that energy is stored in it in the form of elastic potential energy. When the string is released, the string exerts a force on the arrow and the arrow gains velocity.

The arrow is initially at rest. The bowstring is pulled and released, keeping the arrow at an angle to the horizontal. If the arrow is launched at an angle, the force exerted on the arrow can be resolved into two components- along the horizontal and the vertical directions. The horizontal component of the force provides the horizontal component of its initial velocity and the vertical component provides the vertical component of its initial velocity. The arrow, thus travels in 2 dimensions, moving both vertically and horizontally.

Conclusion:

Newton’s first law provides an elegant way to explain the two-dimensional motion of the arrow, where the horizontal component of its velocity is provided by the horizontal component of the force exerted on the arrow.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?
Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor  µC 6.00 µF capacitor  µC 3.00 µF capacitor  µC capacitor C  µC
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY