Physics Fundamentals
2nd Edition
ISBN: 9780971313453
Author: Vincent P. Coletta
Publisher: PHYSICS CURRICULUM+INSTRUCT.INC.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 17P
To determine
Force required to bring the boat rest into
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object has a mass of 100 kg.a) How much does it weigh on Earth?b) How much does it weigh on the Moon (gmoon = 1.6 m/sz)?
A 2.3 kg toy car is accelerated from rest by a net force shown in the graph. The approximate speed in m/s
of the car when the force removed is:
F (N)
10.0
5.0
50 75 100 150
х (ст)
A net force of 3,000.0 N accelerates a car from rest to 37.4 km/h in 5.00 s. (a) What is the mass of the
car? (b) What is the weight of the car?
(а) т%3
x 10° kg
sa
(b) w =
× 10ª N
Next
Chapter 4 Solutions
Physics Fundamentals
Ch. 4 - Prob. 1QCh. 4 - Prob. 2QCh. 4 - Prob. 3QCh. 4 - Prob. 4QCh. 4 - Prob. 5QCh. 4 - Prob. 6QCh. 4 - Prob. 7QCh. 4 - Prob. 8QCh. 4 - Prob. 9QCh. 4 - Prob. 10Q
Ch. 4 - Prob. 11QCh. 4 - Prob. 12QCh. 4 - Prob. 13QCh. 4 - Prob. 14QCh. 4 - Prob. 15QCh. 4 - Prob. 16QCh. 4 - Prob. 1PCh. 4 - Prob. 2PCh. 4 - Prob. 3PCh. 4 - Prob. 4PCh. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Prob. 7PCh. 4 - Prob. 8PCh. 4 - Prob. 9PCh. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Prob. 18PCh. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Prob. 24PCh. 4 - Prob. 25PCh. 4 - Prob. 26PCh. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - Prob. 29PCh. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - Prob. 32PCh. 4 - Prob. 33PCh. 4 - Prob. 34PCh. 4 - Prob. 35PCh. 4 - Prob. 36PCh. 4 - Prob. 37PCh. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40PCh. 4 - Prob. 41PCh. 4 - Prob. 42PCh. 4 - Prob. 43PCh. 4 - Prob. 44PCh. 4 - Prob. 45PCh. 4 - Prob. 46PCh. 4 - Prob. 47PCh. 4 - Prob. 48PCh. 4 - Prob. 49PCh. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Prob. 56P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car weighing 2.5 metric tons and traveling at 90 km/h hits a 500 m long stretch of black ice. Unfortunately, due to skidding, neither accelerating nor braking has any effect on the speed! The driver manages to maintain steady straight direction of motion and the only impact is provided by the ice friction force, which is numerically equal to 4v² Newtons, where the velocity v of the car is measured in m/sec. (a) Using Newton's Second Law F = ma, set up a mathematical model for the position x(t) and velocity v(t) of the car as functions of time t. Start by drawing a diagram and choosing a consistent system of units based on kg, m, sec (1 ton = 1000 kg, 1 m/sec = 3.6 km/h, 1 N = 1 kg · m/sec²). Introduce and label the variables, show the units and write down the differential equations and the intial conditions. (b) Use the model in part a to calculate v(t) and x(t). Fully show the process of solving the initial value problems. (c) Based on your work so far, how long will it take to pass…arrow_forwardA locomotive pulls 10 identical freight cars of mass =1.0×10^5 kg with an acceleration of =3.0 m/s^2.What is the magnitude 3,4 of the force between the third and fourth cars?arrow_forwardA particle of mass 1.0 kg is subjected to a force Fiz = -3.0N and a second force of F2 = 14.0N.Calculate the magnitude of the acceleration, in m/s, of the particle. Use two significant digits please.arrow_forward
- A player hits a ball with a speed of 39 m/s at an angle of Ɵ= 54 at a place where gravity is equal to 9.8 m/s 2 a. Find the x using this equation: x=Vo cos Ɵ t b. Find the y using : y=Vo sin Ɵ t – ½ gt2 c. Find the velocity of x and y d. Find the velocity along x axis using Vx= Vo cos Ɵ Vy= Vo sin Ɵ gtarrow_forwarda car of mass 2.0*10^3 kg is initialy moving at 21 m/s when the brakes are applied and the car is brought to stop in 25m. Assuming the force that the stops the car is constant, find the magnitude of that force that stop the car?arrow_forwardForce is defined as mass times acceleration. Starting with SI base units, derive a unit for force. Using SI prefixes, suggest a convenient unit for the force resulting from a collision with a 10-ton trailer truck moving at 55 mi per hour and for the force resulting from the collision of a molecule of mass around 10 - 20 kg moving almost at the speed of light (3 * 108 m/s) with the wall of its container. (Assume a 1-second deceleration time for both collisions.)arrow_forward
- 6.00k, with t in seconds and r in meters. An electron's position is given by 7 = 4.00tî – 5.00t2 ĵ + (a) In unit-vector notation, what is the electron's velocity v (t)? (Use the following as necessary: t.) V (t) = m/s (b) What is v in unit-vector notation at t = 5.00 s? v(t = 5.00) = m/s (c) What is the magnitude of v at t = 5.00 s? m/s (d) What angle does v make with the positive direction of the x axis at t = 5.00 s? ° (from the +x axis)arrow_forwardAn airliner of mass 1.70 * 105 kg lands at a speed of 75.0 m>s. As it travels along the runway, the combined effects of air resistance, friction from the tires, and reverse thrust from the engines produce a constant force of 2.90 * 105 N opposite to the airliner’s motion. What distance along the runway does the airliner travel before coming to a halt?arrow_forwardDuring a head on collision, the passengers in the front seat of a car accelerate from 13.3m/s to rest in 0.10s. The driver of the car held out their arm to stop their 25kg child from smashing into the dashboard. What force in pounds (1N = 0.225lbs) is needed to keep the child from moving?arrow_forward
- A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of 6.20×105 m/s2 for 8.10×10−4 s . What is its muzzle velocity (that is, its final velocity)?arrow_forward2.6. A car of mass 750 kg is accelerated from rest by a constant force of 500 N for a distance of 200 m. Calculate the maximum speed reached and the brake force required to stop the car in a distance of 20 m.arrow_forwardQuestion 1. (1.1) A force has magnitude 20N. It’s one rectangular component is 12N , the other rectangular component must be? (1.2)Identify which type of motion of an object is described as motion in a straight line? (1.3)Which type of motion is “a train moving on a track “? (1.5). If an object moves along a straight path it is said to be ………………… motion (1.6)When a ball is hit for a sixer in cricket then it is in…………..(1.7) What is meant by the rate of displacement of a body?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY