Concept explainers
(a)
Calculate the number of branches in the circuit.
(a)
Answer to Problem 1P
The number of branches in the circuit is 12 branches.
Explanation of Solution
Given data:
Refer to Figure P4.1 in the textbook.
The given circuit is modified as shown in Figure 1.
A branch is defined as a single electrical device or elements.
In Figure 1, there are 12 branches in the circuit. They are,
That is, 2 branch with a dependent source, 2 branches with independent sources, and 8 branches with resistors.
Conclusion:
Thus, the number of branches in the circuit is 12 branches.
(b)
Find the number of branches where the current is unknown.
(b)
Answer to Problem 1P
The number of branches in which the current unknown is 11 branches.
Explanation of Solution
Given data:
Refer to Figure 1 in Part (a).
In Figure 1, the only one known current in the circuit which is the
Conclusion:
Thus, the number of branches in which the current unknown is 11 branches.
(c)
Find the number of essential branches in the circuit.
(c)
Answer to Problem 1P
The number of essential branches in the circuit is 10 essential branches.
Explanation of Solution
Given data:
Refer to Figure 1 in Part (a).
Essential branch: It is defined as a path that attaches essential nodes without passing through an essential node.
The essential branches in the circuit are,
In the circuit,
Therefore, the circuit has 10 essential branches.
Conclusion:
Thus, the number of essential branches in the circuit is 10 essential branches.
(d)
Find the number of essential branches where the current is unknown in the circuit.
(d)
Answer to Problem 1P
The number of essential branches where the current unknown is 9 essential branches.
Explanation of Solution
Given data:
Refer to Figure 1 in Part (a).
Refer to Part (c), the circuit has 10 essential branches.
In Figure 1, the current is known only in the essential branch that containing the
Therefore, in 9 essential branches the current is unknown.
Conclusion:
Thus, the number of essential branches where the current unknown is 9 essential branches.
(e)
Find the number of nodes in the circuit.
(e)
Answer to Problem 1P
The number of nodes in the circuit is 7 nodes.
Explanation of Solution
Given data:
Refer to Figure 1 in Part (a).
Node: It is defined as a connection point between two or more branches.
In Figure 1, the nodes present in the circuit are,
Conclusion:
Thus, the number of nodes in the circuit is 7 nodes.
(f)
Find the number of essential nodes in the circuit.
(f)
Answer to Problem 1P
The number of essential nodes in the circuit is 5 essential nodes.
Explanation of Solution
Given data:
Refer to Figure 1 in Part (a).
Essential node: It is a node that joins three or more electrical element or devices
In Figure 1, the essential nodes present in the circuit are
Conclusion:
Thus, the number of essential nodes present in the circuit is 5 essential nodes.
(g)
Find the number of meshes present in the circuit.
(g)
Answer to Problem 1P
The number of meshes present in the circuit is 6 meshes.
Explanation of Solution
Given data:
Refer to Figure 1 in Part (a).
Mesh: It is defined as a closed loop path that has no any other smaller loops present inside.
In Figure 1, the closed loops present in the circuit are
Conclusion:
Thus, the number of meshes present in the circuit is 6 meshes.
Want to see more full solutions like this?
Chapter 4 Solutions
Electric Circuits (10th Edition)
Additional Engineering Textbook Solutions
Starting Out with C++ from Control Structures to Objects (9th Edition)
Starting Out with Python (4th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Starting Out With Visual Basic (8th Edition)
Web Development and Design Foundations with HTML5 (8th Edition)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
- Q4: (A) Find the mean of a random variable X if S f(x)= 2x 0 2 for 0arrow_forward(A) Suopces the current measurements in a strip of wire are normally distributed with ca-10(mA) and a varieocom (mA)² 1- What is the probability that a current measurement lies between 7.4 and 11.6 mA? 2-Drew the probability density function of the current distribution. (8) A factory produces light bulbs with a koown probability of P(D)-0.08 that & bulo is dalective. If a bulb is defective, the probability that the quality control test detects it is defective is P(TID)-0.90. Conversely, if a bulb is not defective, the probability that the test Telesly indicaton k as defective is P(TID)-0.05. calculate the probability that a light b is notually defective given that the test result is positive, F(DIT).arrow_forwardTitle: Modelling and Simulating Boost Converter Battery Charging Powered by PV Solar Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system. Please provide the Simulink file and any necessary explanations.arrow_forwardQ1. A 450 V, 50 Hz, 1450 r.p.m., 25 kW, star-connected three-phase induction motor delivers constant (rated) torque at all speeds. The motor equivalent circuit parameters at rated frequency are R1=0.12, R2 = 0.17 2, X₁ = 0.3 2, X2 = 0.5 2, Xm = 23.6 2. Smooth speed variation is obtained by primary frequency control with simultaneous variation of the terminal voltage to maintain constant air-gap flux. Calculate the motor current, power factor and efficiency at one-fifth of rated speed.arrow_forwardQ2. Drive the transformations for currents between a rotating balanced two phase (a,ẞ) winding and a pseudo stationary two phase (d,q) wingding.arrow_forwardThe formulas that should be used to solve the question are in the second picture, also B = k/n a= l/carrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,