
Concept explainers
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence.
arbitrary
binomial
coefficient
conjecture
counterexample
deductive reasoning
equivalent
expanded form
exponential decay
exponential function
exponential growth
f(x)
factored form
factoring
factors
function
growth factor
hypotenuse
inductive reasoning
inverse variation
isosceles
margin of error
parabola
parameters
perfect squares
polynomial
prime polynomial
profit
quadratic function
revenue
right triangle
standard form
symmetry
terms
trinomial
vertex
zero
When an expression has several pieces that are added or subtracted, the individual pieces are called _______________.

To fill: The blank provided in the statement," When an expression has several pieces that are added or subtracted, the individual pieces are called _____."
Answer to Problem 1LSR
Solution:
When an expression has several pieces that are added or subtracted, the individual pieces are called terms.
Explanation of Solution
Given information:
The following list of words to fill the blanks:
Explanation:
Consider the expression,
Here,
Hence, when an expression has several pieces that are added or subtracted, the individual pieces are called terms.
Want to see more full solutions like this?
Chapter 4 Solutions
Pathways To Math Literacy (looseleaf)
- Answer questions 7.4.6 and 7.4.7 respectivelyarrow_forwardWrite an equation for the function shown. You may assume all intercepts and asymptotes are on integers. The blue dashed lines are the asymptotes. 10 9- 8- 7 6 5 4- 3- 2 4 5 15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 1 1 2 3 -1 -2 -3 -4 1 -5 -6- -7 -8- -9 -10+ 60 7 8 9 10 11 12 13 14 15arrow_forwardK The mean height of women in a country (ages 20-29) is 63.7 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 inches? Assume σ = 2.68. The probability that the mean height for the sample is greater than 64 inches is (Round to four decimal places as needed.)arrow_forward
- In a survey of a group of men, the heights in the 20-29 age group were normally distributed, with a mean of 69.6 inches and a standard deviation of 4.0 inches. A study participant is randomly selected. Complete parts (a) through (d) below. (a) Find the probability that a study participant has a height that is less than 68 inches. The probability that the study participant selected at random is less than 68 inches tall is 0.4. (Round to four decimal places as needed.) 20 2arrow_forwardUse the graph of the polynomial function of degree 5 to identify zeros and multiplicity. Order your zeros from least to greatest. -6 3 6+ 5 4 3 2 1 2 -1 -2 -3 -4 -5 3 4 6 Zero at with multiplicity Zero at with multiplicity Zero at with multiplicityarrow_forwardAnswer questions 7.4.4 and 7.4.5 respectivelyarrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning




