Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero If you have two _______________ forms of the same expression you should be able to input ANY value for the variable quantity x and get the same result from either expression.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence. d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 x = − b ± b 2 − 4 a c 2 a x = − b 2 a arbitrary binomial coefficient conjecture counterexample deductive reasoning equivalent expanded form exponential decay exponential function exponential growth f(x) factored form factoring factors function growth factor hypotenuse inductive reasoning inverse variation isosceles margin of error parabola parameters perfect squares polynomial prime polynomial profit quadratic function revenue right triangle standard form symmetry terms trinomial vertex zero If you have two _______________ forms of the same expression you should be able to input ANY value for the variable quantity x and get the same result from either expression.
Solution Summary: The author explains that for two equivalent forms of the same expression, one should be able to input any value for the variable quantity x.
Carefully read through the list of terminology we’ve used in Unit 4. Consider circling the terms you aren’t familiar with and looking them up. Then test your understanding by using the list to fill in the appropriate blank in each sentence.
d
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
x
=
−
b
±
b
2
−
4
a
c
2
a
x
=
−
b
2
a
arbitrary
binomial
coefficient
conjecture
counterexample
deductive reasoning
equivalent
expanded form
exponential decay
exponential function
exponential growth
f(x)
factored form
factoring
factors
function
growth factor
hypotenuse
inductive reasoning
inverse variation
isosceles
margin of error
parabola
parameters
perfect squares
polynomial
prime polynomial
profit
quadratic function
revenue
right triangle
standard form
symmetry
terms
trinomial
vertex
zero
If you have two _______________ forms of the same expression you should be able to input ANY value for the variable quantity x and get the same result from either expression.
An airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west
at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane?
428 mph
41°
50 mph
a. The ground speed of the airplane is
b. The bearing of the airplane is
mph.
south of west.
Rylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach
one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck
starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a
horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate
a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The
angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude
and its direction angle from the positive x-axis.
119 lb
20.2°
377 lb
a. The resultant force is
(Tip: omit degree notations from your answers; e.g. enter cos(45) instead of cos(45°))
b. It's magnitude is
lb.
c. It's angle from the positive x-axis is
Complete the table below. For solutions, round to the nearest whole
number.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY