a.
To identify: The interval in which the function
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 16RE
The function is increasing in the interval
Explanation of Solution
Given information:
The given function is
Consider the given function.
Calculate the derivative of the function.
Now determine the critical points.
By putting
So, the critical points are: 2 and 0.215.
The required intervals are:
Now draw the table 1:
Intervals | |||
Sign of derivative | |||
Behavior of y | Increasing | Decreasing | Decreasing |
Thus, from the table 1 it can be observed that the function is increasing in the interval
b.
To identify: The interval in which the function
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 16RE
The function is decreasing in the interval
Explanation of Solution
Given information:
The given function is
It is known that the table 1 is:
Intervals | |||
Sign of derivative | |||
Behavior of y | Increasing | Decreasing | Decreasing |
Thus, from the table 1 it can be observed that the function is decreasing in the interval
c.
To identify: The interval in which the function
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 16RE
The function is concave up in the interval
Explanation of Solution
Given information:
The given function is
Consider the given function.
Determine the second derivative and equate with zero.
So, the points where double derivative is zero
Also, function is not defined at
Now draw the table 2:
Intervals | |||
Sign of derivative | |||
Behavior of y | Concave down | Concave up | Concave down |
From the table 2 it can be observed that the function is concave up in the interval
d.
To identify: The interval in which the function
d.
![Check Mark](/static/check-mark.png)
Answer to Problem 16RE
The function is concave down in the interval
Explanation of Solution
Given information:
The given function is
Consider the given function.
It is known that the table 2 is:
Intervals | |||
Sign of derivative | |||
Behavior of y | Concave down | Concave up | Concave down |
From the table 2 it can be observed that the function is concave down in the interval
Now draw the graph of the function.
Thus, answer is verified from the graph.
e.
To identify: The local extreme values of the function
e.
![Check Mark](/static/check-mark.png)
Answer to Problem 16RE
Explanation of Solution
Given information:
The given function is
Consider the given function.
The value of y at these critical points
At
Thus, local
f.
To identify: The inflection points of the function
f.
![Check Mark](/static/check-mark.png)
Answer to Problem 16RE
The inflection point is:
Explanation of Solution
Given information:
The given function is
Consider the given function.
From the table it can be observed that there is only one inflation point which is:
Chapter 4 Solutions
CALCULUS-W/XL ACCESS
- Do the Laplace Transformation and give the answer in Partial Fractions. Also do the Inverted Laplace Transformation and explain step-by-step.arrow_forward纟 W₂ Find S-FX SB.MXarrow_forward4. The revenue (in thousands of dollars) from producing x units of an item is R(x)=8x-0.015 x². a) Find the average rate of change of revenue when the production is increased from 1000 to 1001 units.arrow_forward
- MATH 122 WORKSHEET 3 February 5, 2025 . Solve the following problems on a separate sheet. Justify your answers to earn full credit. 1. Let f(x) = x² - 2x + 1. (a) Find the slope of the graph of y = f (x) at the point P = (0,1) by directly evaluating the limit: f'(0) = lim ( f(Ax) - f(0) Ax Ax→0 (b) Find the equation of the tangent line 1 to the graph of ƒ at P. What are the x and y intercepts of 1 ? (c) Find the equation of the line, n, through P that is perpendicular to the tangent line l. (Line n is called the normal line to the graph of f at P.) (d) Sketch a careful graph that displays: the graph of y = f (x), its vertex point, its tangent and normal lines at point P, and the x and y intercepts of these lines. Bonus: Find the coordinates of the second point, Q, (QP), at which the normal line n intersects the graph of f. 2. A rock is thrown vertically upward with an initial velocity of 20 m/s from the edge of a bridge that is 25 meters above a river bed. Based on Newton's Laws of…arrow_forward3. Use the graph for problem #35, p175 to answer the questions. The average price (in cents) per gallon of unleaded gasoline in the United States for the years 2010 to 2019 is shown in this chart. Find the average rate of change per year in the average price per gallon for each time period. Source: U.S. Energy Information Administration. a) 2010 to 2013 b) 2012 to 2018 c) 2014 to 2019arrow_forward4. Researchers at Iowa State University and the University of Arkansas have developed a piecewise function that can be used to estimate the body weight (in grams) of a male broiler during the first 56 days of life according to W(t)=48+3.64t+0.6363²+0.00963 t³ if 1St≤28, -1004+65.8t if 28arrow_forward3. Given the function h(x)=(x²+x-12 if x≤1 3-x if x>1' a) Graph the function h(x). Make the graph big enough to be easily read using the space below. Be sure to label all important aspects of the graph. b) Find all values of x where the function is discontinuous. c) Find the limit from the left and from the right at any values of x found in part b.arrow_forward2. Find the instantaneous rate of change for each function f(x)=2x²-x+3 at x=0..arrow_forward4x-3 2. Determine the interval over which the function is continuous. x+4arrow_forward1. Find the average rate of change for the following functions over the given intervals. a) f(x)=4x-2x²+3x between x=-1 and x=4 b) y lnx between x=1 and x=4arrow_forward1. Find all values x=a where the function is discontinuous, determine if the discontinuity is removable or non- removable. For each value of x, give the limit of the function as x approaches a. Be sure to note when the limit doesn't exist and explain how you know. a) f(x)= 2-x x²(x+5) b) f(x)= x²-9x x²+3x c) p(x)=-3x²+2x²+5x-8arrow_forwardDo the Laplace Transformation and give the answer in Partial Fractions. Also do the Inverted Laplace Transformation and explain step-by-step.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)