
Three students were asked to find the identity of the metal in a particular sulfate salt. They dissolved a 0.14 72-g sample of the salt in water and treated it with excess barium chloride, resulting in the precipitation of barium sulfate. After the precipitate had been filtered and dried, it weighed 0.2327 g.
Each student analyzed the data independently and came to different conclusions. Pat decided that the metal was titanium. Chris thought it was sodium. Randy reported that it was gallium. What formula did each student assign to the sulfate salt?
Look for information on the sulfates of gallium, sodium, and titanium in this text and reference books such as the CRC Handbook of Chemistry and Physics. What further tests would you suggest to determine which student is most likely correct?
a)

Interpretation: The formula of the sulphate salt assigned by each student has to be identified.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Answer to Problem 144MP
The formula of sulphate salt assigned by Pat is Titanium sulphate
The formula of sulphate salt assigned by Chris is Sodium sulphate
The formula of sulphate salt assigned by Randy is Gallium sulphate
Explanation of Solution
Given:
Record the given info
Weight of the sample =
Weight of the precipitate =
The weight of the sample and weight of the precipitate are recorded as shown above.
To calculate the moles of
Molecular mass of
Moles of
The moles of
The general equation can be given as,
The mole ratio between the unknown sulphates salt and
The moles of
To write the formula of sulphate salt assigned by Pat
Pat thinks that formula of sulphate salt is
Then the equation becomes,
There is
Assuming the molar mass of
The value of calculated molar mass of
The standard molar mass of
On comparing the standard molar mass and calculated molar mass of
The formula assigned by Pat is Titanium sulphate. The molar mass of Titanium sulphate is calculated using the weight of the sample and the moles of
To write the formula of sulphate salt assigned by Chris
Chris thinks that formula of sulphate salt is
The equation becomes,
There is
Then the molar mass of
The value of calculated molar mass of
The standard molar mass of
On comparing the standard molar mass and calculated molar mass of
The formula of sulphate salt assigned by Chris is Sodium sulphate. The molar mass of Sodium sulphate is calculated using the weight of the sample and the moles of
To write the formula of sulphate salt assigned by Randy
The formula of sulphate salt assigned by Randy is
The equation becomes,
The molar mass of
The value of calculated molar mass of
The standard molar mass of
On comparing the standard molar mass and calculated molar mass of
The formula of sulphate salt assigned by Randy is Gallium sulphate. The molar mass of Gallium sulphate is calculated using the weight of the sample and the moles of
b)

Interpretation: the most likely correct salt of sulphate has to be given.
Concept Introduction: When two soluble solutions are mixed together, an insoluble salt formation occurs called as precipitate. These precipitates fall out of the solution and the reactions are called as precipitation reaction.
Answer to Problem 144MP
The sulphate salts identified by the students are tested with aqueous Sodium hydroxide.
Explanation of Solution
To identify which salt is likely correct and what test.
By references,
Sodium sulphate (
Gallium sulphate (
Titanium sulphate occurs as green powder and has a formula of
The calculated molar mass of
Therefore, the salt is unlikely to be Titanium sulphate.
In order, to distinguish the like salt between
The sulphate salts are made to dissolve in water and later are treated with Sodium hydroxide.
Gallium (
Based on the solubility rules and the references, Gallium hydroxide is insoluble
The salt that is likely to be correct is Gallium sulphate.
The most unlike salt is to be Titanium sulphate because Titanium sulphate takes a formula of
Hence, the most likely correct salt predicted is by Randy as Gallium sulphate.
Want to see more full solutions like this?
Chapter 4 Solutions
EBK CHEMISTRY
- answer thisarrow_forwardplease add appropriate arrows and tell me in detail where to add which or draw itarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Temporary cross-linked polymer Using: 4% polyvinyl alcohol+ methyl red + 4% sodium boratearrow_forward
- can you please answer both these questions and draw the neccesaryarrow_forwardcan you please give the answer for both these pictures. thankyouarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) | Bakelite like polymer Using: Resorcinol + NaOH + Formalinarrow_forward
- Question 19 0/2 pts 3 Details You have a mixture of sodium chloride (NaCl) and potassium chloride (KCl) dissolved in water and want to separate out the Cl- ions by precipitating them out using silver ions (Ag+). The chemical equation for the net ionic reaction of NaCl and KCl with silver nitrate, AgNO3, is shown below. Ag+(aq) + Cl(aq) → AgCl(s) The total mass of the NaCl/KCl mixture is 1.299 g. Adding 50.42 mL of 0.381 M solution precipitates out all of the Cl-. What are the masses of NaCl and KCl in the mixture? Atomic masses: g: Mass of NaCl g: Mass of KCL Ag = 107.868 g mol- 1 Cl = 35.453 g mol- 1 K = 39.098 g mol- N = 14.007 g mol−1 Na = 22.99 g mol−1 0 = 15.999 g mol 1 Question Help: ✓ Message instructor Submit Questionarrow_forwardPart 1. Draw monomer units of the following products and draw their reaction mechanism (with arrow pushing) Polyester fiber Using a) pthalic anhydride + anhydrous sodium acetate + ethylene glycol B)pthalic anhydride + anhydrous sodium acetate + glycerolarrow_forwardIdentify the missing starting materials/ reagents/ products in the following reactions. Show the stereochemistry clearly in the structures, if any. If there is a major product, draw the structures of the major product with stereochemistry clearly indicated where applicable. Show only the diastereomers (you do not have to draw the pairs of enantiomers). If you believe that multiple products are formed in approximately equal amounts (hence neither is the major product), draw the structures of the products, and show the detailed mechanism of these reactions to justify the formation of the multiple products. If you believe no product is formed, explain why briefly. (6 mark for each, except f and g, which are 10 mark each)arrow_forward
- 3. What starting material would you use to synthesize 3-hydroxypentanoic acid using a NaBH4 reduction?arrow_forward1. Give stereochemical (Fischer projection) formulas for all (but no extras) the stereoisomers that could theoretically form during the reduction of a. the carbonyl group of 2-methyl-3--pentanone b. both carbonyl groups of 2,4-pentanedione (careful!) 2. Predict the products of the reduction of O=CCH2CH2CH2C=O with a. LiAlH4 b. NaBH4 CH3 OHarrow_forwardWhich of the following compounds can be synthesized using one reaction from any alkene, as a major product? If it can be synthesized, propose a route, and you may use any other starting materials, reagents and solvents as needed. If you do not think that it can be synthesized as a major product from an alkene, explain in detail why.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax





