HEAT+MASS TRANSFER:FUND...-CONNECTPLUS
6th Edition
ISBN: 9781260439991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 142P
To determine
The quench time from
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I keep trying this problem but cant seem to get the sheer right can you help me figure this out please?
The pillar crane is subjected to the crate having a mass of 1000 kgkg. The boom is held in position shown in (Figure 1).Determine the force in the tie rod ABAB.Determine the horizontal and vertical reactions at the pin support CC.
Problem 7.1
Part A
In (Figure 1), F₁ = 550 lb, F2 = 250 lb, and F3 = 340 lb.
Figure
F
F
B
Part B
Determine the shear force at point C.
Express your answer to three significant figures and include the appropriate units.
Vc=522
?
lb
Submit Previous Answers Request Answer
× Incorrect; Try Again; 15 attempts remaining
Part C
Determine the moment at point C.
Express your answer to three significant figures and include the appropriate units.
1 of 1
Mc = 1867
F
E
D
lb.ft
Submit
Previous Answers Request Answer
× Incorrect; Try Again; 24 attempts remaining
▸
Part D
6 ft-
4 ft-
4 ft-
6 ft
12 ft
Chapter 4 Solutions
HEAT+MASS TRANSFER:FUND...-CONNECTPLUS
Ch. 4 - What is the physical significance of the Biot...Ch. 4 - What is lumped system analysis? When is it...Ch. 4 - In what medium is the lumped system analysis more...Ch. 4 - For which solid is the lumped system analysis more...Ch. 4 - For which kinds of bodies made of the same...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider heat transfer between two identical hot...Ch. 4 - Consider a hot baked potato on a plate. The...Ch. 4 - Consider a potato being baked in an oven that is...Ch. 4 - Consider two identical 4-kg pieces of roast beef....
Ch. 4 - Consider a sphere and a cylinder of equal volume...Ch. 4 - Obtain relations for the characteristic lengths of...Ch. 4 - Obtain a relation for the time required for a...Ch. 4 - A brick of 20310257mm in dimension is being burned...Ch. 4 - Prob. 15PCh. 4 - Prob. 16PCh. 4 - Prob. 17PCh. 4 - Metal plates...Ch. 4 - Prob. 19PCh. 4 - Prob. 20PCh. 4 - Prob. 21PCh. 4 - A 6-mm-thick stainless steel strip...Ch. 4 - After heat treatment, the 2-cm-thick metal plates...Ch. 4 - A long copper rod of diameter 2.0 cm is initially...Ch. 4 - Prob. 25PCh. 4 - Steel rods...Ch. 4 - Prob. 27PCh. 4 - Prob. 28PCh. 4 - To warm up some milk for a baby, a mother pours...Ch. 4 - A person is found dead at 5 p.m. in a room whose...Ch. 4 - Prob. 31PCh. 4 - In an experiment, the temperature of a hot gas...Ch. 4 - Prob. 33PCh. 4 - Pulverized coal particles are used in oxy-fuel...Ch. 4 - Oxy-fuel combustion power plants use pulverized...Ch. 4 - Plasma spraying is a process used for coating a...Ch. 4 - Consider a spherical shell satellite with outer...Ch. 4 - Prob. 38PCh. 4 - Prob. 39PCh. 4 - Prob. 40EPCh. 4 - Consider a sphere of diameter 5 cm, a cube of side...Ch. 4 - Prob. 42PCh. 4 - An egg is to be cooked to a certain level of...Ch. 4 - What is an infinitely long cylinder? When is it...Ch. 4 - What is the physical significance of the Fourier...Ch. 4 - Prob. 46CPCh. 4 - Prob. 47CPCh. 4 - The Biot number during a heat transfer process...Ch. 4 - A body at an initial temperature of Ti, is brought...Ch. 4 - Prob. 50PCh. 4 - In a meat processing plant, 2-cm-thick steaks...Ch. 4 - Prob. 52PCh. 4 - Prob. 53PCh. 4 - Prob. 54PCh. 4 - Prob. 55PCh. 4 - Layers of 23-cm-thick meat slabs...Ch. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Prob. 62EPCh. 4 - Prob. 63PCh. 4 - Prob. 64PCh. 4 - Prob. 65PCh. 4 - Prob. 66PCh. 4 - A 30-cm-diameter, 4-m-high cylindrical column of a...Ch. 4 - Prob. 68PCh. 4 - Prob. 69PCh. 4 - Prob. 70PCh. 4 - For heat transfer purposes, an egg can be...Ch. 4 - Citrus fruits are very susceptible to cold...Ch. 4 - Chickens with an average mass of 1.7 kg...Ch. 4 - Prob. 74PCh. 4 - Prob. 75PCh. 4 - Prob. 76PCh. 4 - Oranges of 2.5-in-diameter...Ch. 4 - Prob. 78PCh. 4 - Prob. 79PCh. 4 - Prob. 80PCh. 4 - Prob. 81PCh. 4 - A 9-cm-diameter potato...Ch. 4 - In Betty Crocker s Cookbook, it is stated that it...Ch. 4 - Prob. 84PCh. 4 - Under what conditions can a plane wall be treated...Ch. 4 - What is a semi-infinite medium? Give examples of...Ch. 4 - Consider a hot semi-infinite solid at an initial...Ch. 4 - Prob. 88EPCh. 4 - Prob. 89PCh. 4 - In areas where the air temperature remains below...Ch. 4 - Prob. 91PCh. 4 - A highway made of asphalt is initially at a...Ch. 4 - A thick aluminum block initially at 20C is...Ch. 4 - Prob. 94PCh. 4 - A thick wall made of refractory bricks...Ch. 4 - Prob. 96PCh. 4 - Prob. 97PCh. 4 - A thick wood slab (k=0.17W/m.K,=1.2810-7m2/s) and...Ch. 4 - Prob. 99PCh. 4 - Prob. 100PCh. 4 - Prob. 101PCh. 4 - Prob. 102PCh. 4 - Prob. 103PCh. 4 - Prob. 104PCh. 4 - Prob. 105PCh. 4 - A barefooted person whose feet are at 32C steps on...Ch. 4 - What is the product solution method? How is it...Ch. 4 - How is the product solution used to determine the...Ch. 4 - Prob. 109CPCh. 4 - Consider a short cylinder whose top and bottom...Ch. 4 - Prob. 111PCh. 4 - Prob. 112PCh. 4 - Prob. 113PCh. 4 - A hot dog can be considered to be a cylinder 5 in...Ch. 4 - Prob. 115PCh. 4 - Prob. 116PCh. 4 - A 2-cm-high cylindrical ice block...Ch. 4 - Prob. 118PCh. 4 - Prob. 119PCh. 4 - Prob. 120PCh. 4 - Prob. 121PCh. 4 - Prob. 122PCh. 4 - Prob. 123PCh. 4 - Prob. 124CPCh. 4 - How does refrigeration prevent or delay the...Ch. 4 - What are the environmental factors that affect the...Ch. 4 - What is the effect of cooking on the...Ch. 4 - Prob. 128CPCh. 4 - Prob. 129CPCh. 4 - Prob. 130CPCh. 4 - Prob. 131CPCh. 4 - How does the rate of freezing affect the...Ch. 4 - Prob. 133CPCh. 4 - Prob. 134CPCh. 4 - Prob. 135CPCh. 4 - Prob. 136CPCh. 4 - Prob. 137CPCh. 4 - Prob. 138PCh. 4 - Chickens with an average mass of 2.2 kg and...Ch. 4 - Prob. 140EPCh. 4 - Prob. 141PCh. 4 - Prob. 142PCh. 4 - A long roll of 2-m-wide and 0.5-cm-thick 1-Mn...Ch. 4 - Prob. 144PCh. 4 - Prob. 145PCh. 4 - Prob. 146PCh. 4 - During a picnic on a hot summer day, the only...Ch. 4 - Two metal rods are being heated in an oven with...Ch. 4 - Stainless steel ball bearings...Ch. 4 - Prob. 150PCh. 4 - Prob. 151PCh. 4 - In Betty crockers Cookbook, it is stated that it...Ch. 4 - A watermelon initially at 35C is to be cooled by...Ch. 4 - Prob. 154PCh. 4 - Prob. 155PCh. 4 - Prob. 156PCh. 4 - Prob. 157PCh. 4 - Prob. 158PCh. 4 - Prob. 159PCh. 4 - Prob. 160PCh. 4 - Prob. 161PCh. 4 - Prob. 162PCh. 4 - Prob. 163PCh. 4 - Lumped system analysis of transient heat...Ch. 4 - Prob. 165PCh. 4 - Prob. 166PCh. 4 - An 18-cm-long, 16-cm-wide, and 12-cm-high hot iron...Ch. 4 - Prob. 168PCh. 4 - Prob. 169PCh. 4 - Prob. 170PCh. 4 - Prob. 171PCh. 4 - Prob. 172PCh. 4 - A long 18-cm-diameter bar made of hardwood...Ch. 4 - Consider a 7.6-cm-long and 3-cm-diameter...Ch. 4 - Consider a 7.6-cm-diameter cylindrical lamb meat...Ch. 4 - Prob. 176PCh. 4 - A small chicken (k=0.45W/m.K,=0.1510-6m2/s) and...Ch. 4 - A potato may be approximated as a 5.7-cm-diameter...Ch. 4 - When water, as in a pond or lake, is heated by...Ch. 4 - A large chunk of tissue at 35C with a thermal...Ch. 4 - Prob. 181PCh. 4 - Citrus trees are very susceptible to cold weather,...
Knowledge Booster
Similar questions
- Sketch h, for Problem 13.64 13 13.65 In Sketch i the tension on the slack side of the left pulley is 20% of that on the tight side. The shaft rotates at 1000 rpm. Select a pair of deep-groove roller bearings to sup- port the shaft for 99% reliability and a life of 20,000 hr. Assume Eq. (13.83) can be used to account for lubricant cleanliness. All length dimensions are in millimeters. b Z 02 0 y 200 500. 187 100 30° B TONE 500 diam 800 N 650 diam 100 N Sketch i, for Problem 13.65 வarrow_forwardProblem 2: Consider the rectangular wood beam below. Use E=1.0. 1. Determine the slope at A. 2. Determine the largest deflection between A and B. Use the elastic curve equation. Show all work. (20%) 3 kN/m A 2.4 m - 50 mm AT 150 mm 0000 - B C 1.2 m→arrow_forwardPlease give a clear solution.arrow_forward
- USE MATLAB ONLY Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ... title('Velocity Triangle'), ... xlabel('x'),ylarrow_forwardThe wall of a furnace has a thickness of 5 cm and thermal conductivity of 0.7 W/m-°C. The inside surface is heated by convection with a hot gas at 402°C and a heat transfer coefficient of 37 W/m²-°C. The outside surface has an emissivity of 0.8 and is exposed to air at 27°C with a heat transfer coefficient of 20 W/m²-ºC. Assume that the furnace is inside a large room with walls, floor and ceiling at 27°C. Show the thermal circuit and determine the heat flux through the furnace wall. h₁ T₁ k -L T. sur ho Earrow_forwardTurbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ... title('Velocity Triangle'), ... xlabel('x'),ylabel('y'), gridarrow_forward
- To save fuel during the heating season it is suggested that glass windows be covered at night with a 1.2 cm layer of polystyrene. Estimate the percent savings in energy and discuss the feasibility of this idea. Show the thermal circuit with and without the insulation panel. Consider a typical case of 0.2 cm thick window glass with inside and outside heat transfer coefficients of 6 and 32 W/m²-ºC. Lg←←Lp h T₁ T。 g kp insulation panelarrow_forwardA plate of thickness L and thermal conductivity k is exposed to a fluid at temperature T1 with a heat transfer coefficient h, on one side and T2 and h₂ on the other side. Determine the one-dimensional temperature distribution in the plate. Assume steady state and constant conductivity. L h h T%2 k Tx1 0xarrow_forwardDetermine the heater capacity needed to maintain the inside temperature of a laboratory chamber at 38°C when placed in a room at 21°C. The chamber is cubical with each side measuring 35 cm. The walls are 1.2 cm thick and are made of polystyrene. The inside and outside heat transfer coefficients are 5 and 22 W/m²-°C.arrow_forward
- (a) Refer to the above figure .What kind of controller is it ? (b) simplify the block diagramto derive the closed loop transfer function of the system. (C) What are the assumptions thatare needed to make to findthe controller gain ? What arethe value of Kp , Ti and Td ?arrow_forwardLonsider a regenerative gas turbine power plant with two stages of compression and two stages of expansion. The compressor pressure ratio of the compressor is 3. Air enters each stage of compressor at 290 K and esch stage of turbine at 1400 K. The regetierator has an effectiveness of 100%, Determine (a) The enthalpy at stage#2 in KJ/kg (b) The enthalpy at stage in KJ/kg" (c) The cathalpy at stager in KJ/kg* (d) The enthalpy at stage#10 in KJ/kg (c) The mass flow rate of air needed to develop a net power output of 50 MW *For all final answers please enter the integer part only, (ie 1234) and do not include the decimal part and the decimal point No rounding in your calculationarrow_forwardConsider a regenerative gas turbine power plant with two stages of compression and two stages of expansion. The compressor pressure ratio of the compressor is 3. Air enters each stage of compressor at 290 K and each stage of turbine at 1400 K. The regenerator has an effectiveness of 100%. Determine (a) The enthalpy at stage#2 in KJ/kg⭑ (b) The enthalpy at stage#6 in KJ/kg* (c) The enthalpy at stage#9 in KJ/kg (d) The enthalpy at stage#10 in KJ/kg (e)The mass flow rate of air needed to develop a net power output of 50 MW* *For all final answers please enter the integer part only, (ie 1234) and do not include the decimal part and the decimal point No rounding in your calculation. Compressor stage 1 Regenerator www HX ww 9 Combustor Reheat Intercooler ww Compressor stage 2 Turbine 1 combustor Turbine 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY