
Concept explainers
In most of its ionic compounds, cobalt is either Co(II) or Co(III). One such compound, containing chloride ion and waters of hydration, was analyzed, and the following results were obtained. A 0.256-g sample of the compound was dissolved in water, and excess silver nitrate was added. The silver chloride was filtered, dried, and weighed, and it bad a mass of 0.308 g. A second sample of 0.416 g of the compound was dissolved in water, and an excess of sodium hydroxide was added. The hydroxide salt was filtered and heated in a flame, forming cobalt(III) oxide. The mass of cobalt(III) oxide formed was 0.145 g.
a. What is the percent composition, by mass, of the compound?
b. Assuming the compound contains one cobalt ion per formula unit, what is the formula?
c. Write balanced equations for the three reactions described.
(a)

Interpretation: The mass percentage of compound along with balanced chemical equation and formula has to be written.
Concept introduction: The mass percent of compound is given by the calculated mass of the compound to the total mass. The mass percent of compound is given by the formula,
Answer to Problem 137CP
The mass percentage of
Explanation of Solution
Given:
Record the given info
Mass of sample containing chlorine =
Mass of sample containing cobalt =
Mass of silver chloride =
Mass of cobalt (III) oxide =
The mass of samples containing chlorine and cobalt are recorded with the masses of silver chloride and cobalt (III) oxide as shown above.
To calculate the mass percent of
Molar mass of Chlorine =
Molar mass of silver chloride =
Moles of
Therefore, the mass percent of
Mass percent of
Mass percent of
The mass percent of
To calculate the mass percent of
Molar mass of cobalt =
Molar mass of cobalt (III) oxide =
Moles of
Therefore, the mass percent of
Mass percent of
The mass percent of
To calculate the mass percent of water
Molar mass of water =
Assume that 100g of compound is,
The mass percent of hydrogen and oxygen is calculated by plugging in the molar mass of water and molar masses of hydrogen and oxygen to the total mass of the sample. The molar masses of hydrogen and oxygen were found to be
The mass percentages of
(b)

Interpretation: To calculate the empirical formula of the compound
Concept introduction: The representation of simplest positive integer of a atoms in a compound is called as empirical formula.
Answer to Problem 137CP
The formula for the compound is
Explanation of Solution
To calculate the empirical formula of the compound
Out of 100 g of compound, there are
Dividing the moles by the smallest number,
The empirical formula of the compound becomes
The empirical formula of the compound is calculated by calculating the mole ratio of individual elements divide by the smallest number. The empirical formula of the compound is found to be
The empirical formula of the compound was calculated by using the mole ratio of individual elements divided by the smallest number. The empirical formula of the compound is found to be
(c)

Interpretation: To write the balanced equation of the precipitation reactions.
Concept introduction:
When two solutions containing soluble salts are mixed together, an insoluble salt so called precipitate is obtained and the reaction is called as precipitation reaction. These precipitation reactions help in the determination of various ions in the solution.’
Answer to Problem 137CP
This is redox reaction. Hence, an oxidizing agent is required and the oxidizing agent is
Explanation of Solution
To write the balanced equation of the precipitation reactions.
The reaction between cobalt chloride hexahydrate with base such as silver nitrate and sodium hydroxide yields precipitates of silver chloride and cobalt hydroxide with release of water and sodium chloride. The equation for this reaction can be given as,
Cobalt hydroxide oxidizes to cobalt (III) oxide and water.
Two moles of silver nitrate are required to react with cobalt chloride hexahydrate to give 2 moles of silver chloride as precipitate with side products being cobalt nitrate and water. Cobalt nitrate being water soluble remains inside the solution, thus precipitating silver chloride out of the solution.
Two moles of sodium hydroxide are required to react with cobalt chloride hexahydrate to give 2 moles of cobalt hydroxide with sodium chloride and water. Sodium chloride being soluble in water, dissociates as spectator ions thus remaining in the solution and a precipitate of cobalt hydroxide is precipitated out.
Cobalt hydroxide on heating is oxidized to cobalt (III) oxide with water.
The balanced form of these equations can be given as,
The reaction of heating cobalt hydroxide is oxidation-reduction reaction, where oxygen is used as oxidizing agent and cobalt (III) oxide is obtained.
The given reactions were found to be precipitation reaction and moles on the reactant and the product were obtained. The reaction of heating cobalt hydroxide is oxidation-reduction reaction, where oxygen is used as oxidizing agent to oxidized cobalt hydroxide to cobalt (III) oxide. The balanced equations are,
Want to see more full solutions like this?
Chapter 4 Solutions
Chemistry
- Show by chemical equation the reaction of [HCN] and [CH3MgBr] with any alarrow_forwardGive the chemical equation for the preparation of: -Any aldehyde -Any keytonearrow_forward+ C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward
- → Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forwardFor each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- Identifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardAssign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





