Concepts Of Programming Languages
Concepts Of Programming Languages
12th Edition
ISBN: 9780134997186
Author: Sebesta, Robert W.
Publisher: Pearson,
Expert Solution & Answer
Book Icon
Chapter 4, Problem 12RQ

Explanation of Solution

Parsing algorithms work only on a subset of grammars for the following reasons:

  • Parsing based on a grammar (even unambiguous) is often complicated and inefficient.
  • The complexity of parsing algorithms is generally Ο(n3), which means the time will be of order of cube of the length of parsing string.
  • Parsing algorithms are required to be repeated if parser makes some mistakes in the process. Also algorithms are required to be backed up as some times the parse tree created should be dismantled and rebuilt in some cases

Blurred answer
Students have asked these similar questions
here is a diagram code : graph LR subgraph Inputs [Inputs] A[Input C (Complete Data)] --> TeacherModel B[Input M (Missing Data)] --> StudentA A --> StudentB end subgraph TeacherModel [Teacher Model (Pretrained)] C[Transformer Encoder T] --> D{Teacher Prediction y_t} C --> E[Internal Features f_t] end subgraph StudentA [Student Model A (Trainable - Handles Missing Input)] F[Transformer Encoder S_A] --> G{Student A Prediction y_s^A} B --> F end subgraph StudentB [Student Model B (Trainable - Handles Missing Labels)] H[Transformer Encoder S_B] --> I{Student B Prediction y_s^B} A --> H end subgraph GroundTruth [Ground Truth RUL (Partial Labels)] J[RUL Labels] end subgraph KnowledgeDistillationA [Knowledge Distillation Block for Student A] K[Prediction Distillation Loss (y_s^A vs y_t)] L[Feature Alignment Loss (f_s^A vs f_t)] D -- Prediction Guidance --> K E -- Feature Guidance --> L G --> K F --> L J -- Supervised Guidance (if available) --> G K…
details explanation and background   We solve this using a Teacher–Student knowledge distillation framework: We train a Teacher model on a clean and complete dataset where both inputs and labels are available. We then use that Teacher to teach two separate Student models:  Student A learns from incomplete input (some sensor values missing). Student B learns from incomplete labels (RUL labels missing for some samples). We use knowledge distillation to guide both students, even when labels are missing. Why We Use Two Students Student A handles Missing Input Features: It receives input with some features masked out. Since it cannot see the full input, we help it by transferring internal features (feature distillation) and predictions from the teacher. Student B handles Missing RUL Labels: It receives full input but does not always have a ground-truth RUL label. We guide it using the predictions of the teacher model (prediction distillation). Using two students allows each to specialize in…
We are doing a custom JSTL custom tag to make display page to access a tag handler.   Write two custom tags: 1) A single tag which prints a number (from 0-99) as words. Ex:    <abc:numAsWords val="32"/>   --> produces: thirty-two   2) A paired tag which puts the body in a DIV with our team colors. Ex:    <abc:teamColors school="gophers" reverse="true">     <p>Big game today</p>     <p>Bring your lucky hat</p>      <-- these will be green text on blue background   </abc:teamColors> Details: The attribute for numAsWords will be just val, from 0 to 99   - spelling, etc... isn't important here. Print "twenty-six" or "Twenty six" ... .  Attributes for teamColors are: school, a "required" string, and reversed, a non-required boolean.   - pick any four schools. I picked gophers, cyclones, hawkeyes and cornhuskers   - each school has two colors. Pick whatever seems best. For oine I picked "cyclones" and       red text on a gold body   - if…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:9781337508841
Author:Carey
Publisher:Cengage
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
CMPTR
Computer Science
ISBN:9781337681872
Author:PINARD
Publisher:Cengage
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning