Bundle: Foundations of Astronomy, Enhanced, Loose-Leaf Version, 13th + MindTap Astronomy, 2 terms (12 months) Printed Access Card
13th Edition
ISBN: 9781337214353
Author: Seeds, Michael A., Backman, Dana
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 11RQ
In Ptolemy’s model, which of the following—epicycle, equant, or deferent—travels in uniform circular motion as viewed from a particular point? Name and describe that point. Are these uniform circular motions at the same speeds and in the same directions?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Describe three propositions, now known as Kepler’s laws of planetary motion?
Please answer this question in full steps using proper formulas for universal circular motion. Send ASAP.
Kepler's Third Law and Newton's Law of Universal Gravitation
(a) Use Newton's Universal Law of Gravitation and what you know about centripetal acceleration/force to
derive Kepler's Third Law for a planet in a circular orbit about the sun:
T² = Kr³
K = constant = 4²/GM
where T is the orbital period of the planet (the time for one complete orbit), r is the radius of the planet's
orbit, M is the mass of the sun, and G is the universal gravitational constant.
(b) Determine the metric system units of K and show that they make the units of T² – Kr³ work out
correctly.
(c) The earth orbits the sun once per year (365 days) and its average orbital radius is 1.50 x 10¹¹ m. Use
this information and Kepler's Third Law to estimate the mass of the sun in kilograms.
[answer: about 2 x 10³⁰ kg]
(d) The radius of the sun is about 7 x 108 m. Use this radius and the mass of the sun estimated in part (c)
to estimate the acceleration of an object near the surface of the sun. [answer: about 300 m/s²]
F₂ =G…
Chapter 4 Solutions
Bundle: Foundations of Astronomy, Enhanced, Loose-Leaf Version, 13th + MindTap Astronomy, 2 terms (12 months) Printed Access Card
Ch. 4 - Prob. 1RQCh. 4 - Why did early human cultures observe astronomical...Ch. 4 - Prob. 3RQCh. 4 - Name one example each of a famous politician,...Ch. 4 - Why did Plato propose that all heavenly motion was...Ch. 4 - On what did Plato base his knowledge? Was it...Ch. 4 - Which two-dimensional (2D) and three-dimensional...Ch. 4 - Are the spheres of Eudoxus a scientific model? If...Ch. 4 - In Ptolemys model, how do the epicycles of Mercury...Ch. 4 - Prob. 10RQ
Ch. 4 - In Ptolemys model, which of the followingepicycle,...Ch. 4 - Why did Copernicus have to keep small epicycles in...Ch. 4 - Was the belief held by ancient astronomers that...Ch. 4 - When Tycho observed the new star of 1572, he could...Ch. 4 - Prob. 15RQCh. 4 - Does Tychos model of the Universe explain the...Ch. 4 - Name an empirical law. Why is it considered...Ch. 4 - How does Keplers first law of planetary motion...Ch. 4 - When Mercury is at aphelion (farthest from the...Ch. 4 - Prob. 20RQCh. 4 - What is P for Earth? What is a for Earth? Do these...Ch. 4 - Based Figure 4-13c, do planets with larger a take...Ch. 4 - How did the Alfonsine Tables, the Prutenic Tables,...Ch. 4 - Explain how each of Galileos telescopic...Ch. 4 - How did discovery of the Galilean moons disprove...Ch. 4 - Prob. 26RQCh. 4 - How Do We Know? Describe the differences between a...Ch. 4 - Prob. 1DQCh. 4 - Prob. 2DQCh. 4 - Prob. 3DQCh. 4 - Prob. 4DQCh. 4 - Prob. 5DQCh. 4 - Draw and label a diagram of the western horizon...Ch. 4 - If you lived on Mars, which planets would exhibit...Ch. 4 - How long does it take for one retrograde cycle of...Ch. 4 - If a planet has an average distance from the Sun...Ch. 4 - If a space probe is sent into an orbit around the...Ch. 4 - Uranus orbits the Sun with a period of 84.0 years....Ch. 4 - Prob. 7PCh. 4 - One planet is three times farther from the Sun...Ch. 4 - Galileos telescope showed him that Venus has a...Ch. 4 - Which is the phase of Venus when it is closest?...Ch. 4 - Galileos telescopes were not of high quality by...Ch. 4 - Prob. 1LTLCh. 4 - Study Figures 4-11 and 4-16 and describe the...Ch. 4 - What three astronomical objects are represented...Ch. 4 - Use the figure below to explain how the Ptolemaic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which of Keplers or Newtons laws best describes Aristotelean violent motions?arrow_forward) A boy is flying a drone in a circular path at 35 miles per hour. If the drone is experiencing a centripetal acceleration of 0.70 m/s2, what is the diameter (in meters) of the circle that the boy’s drone is flying?arrow_forwardWhich of the following are, or follow directly from, Kepler's Laws of planetary motion? Check all that apply. More distant planets move at slower speeds. The force of attraction between any two objects decreases with the square of the distance between their centers. The orbit of each planet about the Sun is an ellipse with the Sun at one focus. A planet travels faster when it is nearer to the Sun and slower when it is farther from the Sun. As a planet moves around its orbit, it sweeps out equal areas in equal times.arrow_forward
- Explain and analyse the simiilarities and difference between circular motion and planetary motion.arrow_forward1) Give the following numbers to four significant figures in scientific notation: a) 0.0056542b) 93 842 773c) 0.000000100092d) 0.0095435 2) Repeat part (1), but this time give the numbers to two significant figures. 3) The radial acceleration, a, of a body rotating in a circle of radius r at constant speed v is given by ? =v2/rIf v = (3.00±0.05) m/s and r = (1.5±0.1) m, a) calculate a,b) the maximum values of a, c) minimum values of a, d) the uncertainty in a. 4) Linearize the following equations (rearranged in the form y = mx + c): a) ? = ?? , where F is the dependent variable, N is the independent variable and µ is the constant. b) ? = 2?√(?⁄?) where T is the dependent variable, l is the independent variable and g is the constant.i) What would you plot in order to obtain a straight line)? (Answer for a) and b)ii) How are the slope and intercept related to the constants in the equation? (Answer for a) and b)arrow_forwardFor circular orbits, relate Kepler’s third law of planetary motion to Newton’s law of gravitation and centripetal acceleration to the configuration system or any situational scenarios. Explain and justify. Cite an example to support your answer.arrow_forward
- A planet is about 7.79 x 108 km (orbital radius) from the sun. It takes 1,425 days for the planet to go around its orbit (assume circular orbit). What is the orbital velocity in km/sec of the planet along its orbital path? What is its acceleration toward the sun in km/sec2? (Force attraction of sun = ma = mv2); r = orbital radius rarrow_forwardSuppose a stunt pilot at an air show flies her plane in a circle with a constant radius of 2,950 meters, while maintaining a constant speed of 465 m/s. What acceleration does she experience (number of m/s2) as a result of flying in this circle rather than in a straight line? A pilot can withstand an acceleration of 9 "g" or 88 m/s2.arrow_forwardWe found the centripetal acceleration of the Earth as it revolves around the Sun. Compute the centripetal acceleration of a point on the surface of the Earth at the equator caused by the rotation of the Earth about its axis. (Enter the magnitude. The radius of the Earth is 6,371 km.) m/s²arrow_forward
- If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up anywhere on the circle shown in Figure 3.51. What other information would he need to get to Sacramento?arrow_forwardKepler's 1st law says that our Solar System's planets orbit in ellipses around the Sun where the closest distance to the Sun is called perihelion. Suppose I tell you that there is a planet with a perihelion distance of 2 AU and a semi-major axis of 1.5 AU. Does this make physical sense? Explain why or why not.arrow_forwardWhat is the centripetal acceleration of an object traveling at 3m/s in a circular path of a radius of 2marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY