Bundle: Foundations of Astronomy, Enhanced, Loose-Leaf Version, 13th + MindTap Astronomy, 2 terms (12 months) Printed Access Card
13th Edition
ISBN: 9781337214353
Author: Seeds, Michael A., Backman, Dana
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 11P
Galileo’s telescopes were not of high quality by modern standards. He was able to see the moons of Jupiter, but he never reported seeing features on Mars. Use the small-angle formula to find the angular diameter of Mars when it is closest to Earth. How does that compare with the maximum angular diameter of Jupiter?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Galileo's telescopes were not of high quality by modern standards. He was able to see the moons of Jupiter, but he never reported seeing features on Mars. Use the small-angle formula to find the angular diameter of Mars when it is closest to Earth. How does that compare with the maximum angular diameter of Jupiter? (Assume circular orbits with radii equal to the average distance from the Sun. Using the following distances from the Sun: Mars is 228 million km, Jupiter is 778 million km, and Earth is 150 million km. The radius of Mars is 3396 km. The radius of Jupiter is 71,492 km.)
angular diameter of Mars = ( )seconds of arc
angular diameter of Jupiter =( )seconds of arc
ratio of angular diameters (Jupiter/Mars) = ( )
I. Directions: Complete the given table by finding the ratio of the planet's time of revolution to its radius.
Average
Radius of
Orbit
Times of
Planet
R3
T2
T?/R3
Revolution
Mercury
5.7869 x 1010
7.605 x 106
Venus
1.081 x 1011
1.941 x 107
Earth
1.496 x 1011
3.156 x 107
1. What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support?
II. Solve the given problems. Write your solution on the space provided before each number.
1. You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. Find the
following:
a) Speed
b) Period
c) Radial Acceleration
Given:
Unknown:
Formula:
Solution:
Answer:
Given:
Unknown:
Formula:
Solution:
Answer:
Given:
Unknown:
Formula:
Solution:
Answer:
Imagine you grew up on Mars, whose semi-major axis is 1.5 AU. In observing the planets over your lifetime from the Martian surface, what is the largest angular separation you would see between the Earth and the Sun? Take the orbits of the Earth and Mars to be circular.
Chapter 4 Solutions
Bundle: Foundations of Astronomy, Enhanced, Loose-Leaf Version, 13th + MindTap Astronomy, 2 terms (12 months) Printed Access Card
Ch. 4 - Prob. 1RQCh. 4 - Why did early human cultures observe astronomical...Ch. 4 - Prob. 3RQCh. 4 - Name one example each of a famous politician,...Ch. 4 - Why did Plato propose that all heavenly motion was...Ch. 4 - On what did Plato base his knowledge? Was it...Ch. 4 - Which two-dimensional (2D) and three-dimensional...Ch. 4 - Are the spheres of Eudoxus a scientific model? If...Ch. 4 - In Ptolemys model, how do the epicycles of Mercury...Ch. 4 - Prob. 10RQ
Ch. 4 - In Ptolemys model, which of the followingepicycle,...Ch. 4 - Why did Copernicus have to keep small epicycles in...Ch. 4 - Was the belief held by ancient astronomers that...Ch. 4 - When Tycho observed the new star of 1572, he could...Ch. 4 - Prob. 15RQCh. 4 - Does Tychos model of the Universe explain the...Ch. 4 - Name an empirical law. Why is it considered...Ch. 4 - How does Keplers first law of planetary motion...Ch. 4 - When Mercury is at aphelion (farthest from the...Ch. 4 - Prob. 20RQCh. 4 - What is P for Earth? What is a for Earth? Do these...Ch. 4 - Based Figure 4-13c, do planets with larger a take...Ch. 4 - How did the Alfonsine Tables, the Prutenic Tables,...Ch. 4 - Explain how each of Galileos telescopic...Ch. 4 - How did discovery of the Galilean moons disprove...Ch. 4 - Prob. 26RQCh. 4 - How Do We Know? Describe the differences between a...Ch. 4 - Prob. 1DQCh. 4 - Prob. 2DQCh. 4 - Prob. 3DQCh. 4 - Prob. 4DQCh. 4 - Prob. 5DQCh. 4 - Draw and label a diagram of the western horizon...Ch. 4 - If you lived on Mars, which planets would exhibit...Ch. 4 - How long does it take for one retrograde cycle of...Ch. 4 - If a planet has an average distance from the Sun...Ch. 4 - If a space probe is sent into an orbit around the...Ch. 4 - Uranus orbits the Sun with a period of 84.0 years....Ch. 4 - Prob. 7PCh. 4 - One planet is three times farther from the Sun...Ch. 4 - Galileos telescope showed him that Venus has a...Ch. 4 - Which is the phase of Venus when it is closest?...Ch. 4 - Galileos telescopes were not of high quality by...Ch. 4 - Prob. 1LTLCh. 4 - Study Figures 4-11 and 4-16 and describe the...Ch. 4 - What three astronomical objects are represented...Ch. 4 - Use the figure below to explain how the Ptolemaic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A)At what altitude would a geostationary sattelite need to be above the surface of Mars? Assume the mass of Mars is 6.39 x 1023 kg, the length of a martian solar day is 24 hours 39minutes 35seconds, the length of the sidereal day is 24hours 37minutes 22seconds, and the equatorial radius is 3396 km. The answer can be calculated using Newton's verison of Kepler's third law.arrow_forwardThe mass of the planet is approximately 74.8 times the mass of Jupiter. Calculate the average density of the planet. Give your answer in grams per cubic centimeter.arrow_forwardIf the satellite was placed in an orbit three times farther away, about how long would it take to orbit the Earth once? Answer in days, rounding to one significant figure.days Mars rotates on its axis once every 1.02 days (almost the same as Earth does). (a) Find the distance from Mars at which a satellite would remain in one spot over the Martian surface. (Use 6.42 1023 kg for the mass of Mars.)m(b) Find the speed of the satellite.m/sarrow_forward
- The chart shows the length of time for each planet, in Earth days, to make one complete revolution around the Sun. Orbital Period of Planets iY the Solar System Orbital Period (Earth days) 88 225 365 687 4333 10 759 30 685 60 189 Planet Mercury Venus Earth Mars Jupiter Satum Uranus Neptune Source: NASA Use the data table above to compare the length of a year on Mars and Neptune. (HS-ESS1-4) a. One year on Neptune is almost 100 times longer than a year on Mars. b. One year on these two planets is nearly equal. c. One year on Mars is almost 100 times longer than a year on Neptune. d. One year these two planets is roughly equal to a year on Earth. Use the data table above to determine which of the following statements is TRUE. (HS-ESS1-4) a. There is no relationship between a planet's distance from the Sun and its length of year. b. The closer a planet is to the Sun, the longer the planet's year. c. One year on all planets is about 365 days long. d. The farther away a planet is from the…arrow_forwardOrbital Radius and orbital period data for the four biggest moons of Jupiter are listed in the table below. The mass of the planet Jupiter is 1.9 × 1027 kg. Jupiter's Moon Period (s) Radius (m) T2/r3 Io 1.53×105 4.2×108 ? Europa 3.07×105 6.7×108 ? Ganymede 6.18×105 1.1×109 ? Callisto 1.44×106 1.9×109 ? What pattern do you observe in the last column of data? Which law of Kepler's does this seem to support?arrow_forwardUntil recently, the term "planet" had no clear-cut definition. In August of 2006, leading astronomers established new guidelines and declared that Pluto is no longer a planet. Which of the following is either false or least consistent with the new guidelines? Group of answer choices Pluto is by far the largest known object in the Kuiper belt, while Eris is the largest known object in the asteroid belt. A planet must have cleared the neighborhood around its orbit. Pluto is automatically disqualified from being a planet because its oblong orbit overlaps with Neptune's. A planet must have sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a nearly round shape. Pluto and the asteroid Ceres are both now classified as dwarf planets.arrow_forward
- Jupiter is approximately a sphere of radius 6.99 x 107 m.(a) What is its circumference in kilometers?(b) What is its surface area in square kilometers?(c) What is its volume in cubic kilometers? Needs Complete typed solution with 100 % accuracy.arrow_forwardQuestion 3. Astronomers are consistently finding new moons of Jupiter, both big and small. Suppose astronomers discovered a new moon called Yelruh that orbits a distance of 5.63x108 m from the surface of Jupiter. Using the information for another moon of Jupiter, calculate Yelruh's orbital period.arrow_forwardThe Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed. Calculate the synodic period (in years) using the following formula: 1/Psyn = (1/PEarth) - (1/PMars) where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars. If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!arrow_forward
- The value of "g" at the surface of Mars is 3.7 N/kg. How much would a 60.0-kg person weigh at an altitude above the Martian surface equivalent to the planet's radius?arrow_forwardHow will you determine the distance of Mars from Earth?arrow_forwardSaturn’s A, B, and C Rings extend 75,000 to 137,000 km from the center of the planet. Use Kepler’s third law to calculate the difference between how long a particle at the inner edge and a particle at the outer edge of the three-ring system would take to revolve about the planet. Enter the value you get from the ratio of the period of the inner edge to the outer edge of the rings.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY