The position vector r → of a particle moving in the xy plane is r → = 2 t i ^ + 2 sin [ ( π /4 rad/s) t ] j ^ , with r → in meters and t in seconds. (a) Calculate the x and y components of the particle’s position at t = 0, 1.0, 2.0, 3.0, and 4.0 s and sketch the particle’s path in the xy plane for the interval 0 ≤ t ≤ 4.0 s. (b) Calculate the components of the particle’s velocity at t = 1.0, 2.0, and 3.0 s. Show that the velocity is tangent to the path of the particle and in the direction the particle is moving at each time by drawing the velocity vectors on the plot of the particle’s path in part (a). (c) Calculate the components of the particle’s acceleration at t = 1.0, 2.0, and 3.0 s.
The position vector r → of a particle moving in the xy plane is r → = 2 t i ^ + 2 sin [ ( π /4 rad/s) t ] j ^ , with r → in meters and t in seconds. (a) Calculate the x and y components of the particle’s position at t = 0, 1.0, 2.0, 3.0, and 4.0 s and sketch the particle’s path in the xy plane for the interval 0 ≤ t ≤ 4.0 s. (b) Calculate the components of the particle’s velocity at t = 1.0, 2.0, and 3.0 s. Show that the velocity is tangent to the path of the particle and in the direction the particle is moving at each time by drawing the velocity vectors on the plot of the particle’s path in part (a). (c) Calculate the components of the particle’s acceleration at t = 1.0, 2.0, and 3.0 s.
The position vector
r
→
of a particle moving in the xy plane is
r
→
=
2
t
i
^
+
2
sin
[
(
π
/4 rad/s)
t
]
j
^
,
with
r
→
in meters and t in seconds. (a) Calculate the x and y components of the particle’s position at t = 0, 1.0, 2.0, 3.0, and 4.0 s and sketch the particle’s path in the xy plane for the interval 0 ≤ t ≤ 4.0 s. (b) Calculate the components of the particle’s velocity at t = 1.0, 2.0, and 3.0 s. Show that the velocity is tangent to the path of the particle and in the direction the particle is moving at each time by drawing the velocity vectors on the plot of the particle’s path in part (a). (c) Calculate the components of the particle’s acceleration at t = 1.0, 2.0, and 3.0 s.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.
NOT AI PLS
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.