Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 105E
Interpretation Introduction
To determine:
Moving across the period why atomic radii decreases for main group elements but not for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain why atomic radius decreases as you move to the right across a period for main-group elements but not for transition elements.
On the basis of electron configurations, explain whyboron has a lower ionization energy than beryllium.
Explain the relationship between an element’s row number in the periodic table and the highest principal quantum number in the element’s electron configuration. How does this relationship differ for main-group elements, transition elements, and inner transition elements?
Chapter 4 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 4 - 1. According to Coulomb's law, if the separation...Ch. 4 - Prob. 2SAQCh. 4 - Choose the correct electron configuration for Se....Ch. 4 - Prob. 4SAQCh. 4 - Which set of four quantum numbers corresponds to...Ch. 4 - Prob. 6SAQCh. 4 - Which statement is true about electron shielding...Ch. 4 - Prob. 8SAQCh. 4 - What is the electron configuration for Fe2+?...Ch. 4 - Which species is diamagnetic? Zn Cr 2+ C Mn
Ch. 4 - Prob. 11SAQCh. 4 - Prob. 12SAQCh. 4 - Prob. 13SAQCh. 4 - Prob. 14SAQCh. 4 - Prob. 15SAQCh. 4 - Prob. 16SAQCh. 4 - What are periodic properties?Ch. 4 - Use aluminum as an example to explain how density...Ch. 4 - Explain the contributions of Dobereiner and...Ch. 4 - Who is credited with arranging the periodic table?...Ch. 4 - Prob. 5ECh. 4 - Prob. 6ECh. 4 - What is an electron configuration? Provide an...Ch. 4 - Prob. 8ECh. 4 - Prob. 9ECh. 4 - What is penetration? How does the penetration of...Ch. 4 - Why are the sublevels within a principal level...Ch. 4 - Prob. 12ECh. 4 - Prob. 13ECh. 4 - What are degenerate orbitals? According to Hund’s...Ch. 4 - List all orbitals from 1s through 5s according to...Ch. 4 - Prob. 16ECh. 4 - Copy this blank periodic table onto a sheet of...Ch. 4 - Explain why the s block in the periodic table has...Ch. 4 - Explain why the rows in the periodic table become...Ch. 4 - Explain the relationship between a main-group...Ch. 4 - Explain the relationship between an element's row...Ch. 4 - Which of the transition elements in the first...Ch. 4 - Explain how to write the electron configuration...Ch. 4 - Explain the relationship between the properties of...Ch. 4 - Prob. 25ECh. 4 - Prob. 26ECh. 4 - What is effective nuclear charge? What is...Ch. 4 - When an alkali metal forms an ion, what is the...Ch. 4 - When a halogen forms an ion, what is the charge of...Ch. 4 - Use the concepts of effective nuclear charge,...Ch. 4 - For transition elements, describe the trends in...Ch. 4 - Prob. 32ECh. 4 - Explain how to write an electron configuration for...Ch. 4 - Prob. 34ECh. 4 - Prob. 35ECh. 4 - Prob. 36ECh. 4 - What are the exceptions to the periodic trends in...Ch. 4 - Prob. 38ECh. 4 - Prob. 39ECh. 4 - What is metallic character? What are the observed...Ch. 4 - Prob. 41ECh. 4 - Prob. 42ECh. 4 - Determine whether each element is a main-group...Ch. 4 - Determine whether each element is a transition...Ch. 4 - Write the full electron configuration for each...Ch. 4 - Prob. 46ECh. 4 - Write the full orbital diagram for each element. N...Ch. 4 - Prob. 48ECh. 4 - Use the periodic table to write the electron...Ch. 4 - Use the periodic table to determine the element...Ch. 4 - Use the periodic table to determine each quantity....Ch. 4 - Use the periodic table to determine each quantity....Ch. 4 - Prob. 53ECh. 4 - Prob. 54ECh. 4 - Determine the number of valence electrons in each...Ch. 4 - Prob. 56ECh. 4 - Which outer electron configuration would you...Ch. 4 - Prob. 58ECh. 4 - Prob. 59ECh. 4 - List the number of valence electrons in each...Ch. 4 - Which pair of elements do you expect to be most...Ch. 4 - Prob. 62ECh. 4 - Predict the charge of the ion formed by each...Ch. 4 - Predict the charge of the ion formed by each...Ch. 4 - According to Coulomb’s law, which pair of charged...Ch. 4 - Prob. 66ECh. 4 - Prob. 67ECh. 4 - Arrange the atoms according to decreasing...Ch. 4 - If core electrons completely shielded valence...Ch. 4 - In Section 3.6/, we estimated the effective...Ch. 4 - Prob. 71ECh. 4 - Choose the larger atom in each pair. Sn or Si Br...Ch. 4 - Arrange these elements in order of increasing...Ch. 4 - Arrange these elements in order of decreasing...Ch. 4 - Write the electron configuration for each ion. O2...Ch. 4 - Write the electron configuration for each ion. Cl...Ch. 4 - Write orbital diagrams for each ion and determine...Ch. 4 - Write orbital diagrams for each ion and determine...Ch. 4 - Which is the larger species in each pair? LiorLi+...Ch. 4 - Which is the larger species in each pair? SrorSr2+...Ch. 4 - Arrange this isoelectronic series in order of...Ch. 4 - Arrange this isoelectronic series in order of...Ch. 4 - Choose the element with the higher first...Ch. 4 - Prob. 84ECh. 4 - Arrange these elements in order of increasing...Ch. 4 - Prob. 86ECh. 4 - For each element, predict where the “jump” occurs...Ch. 4 - Prob. 88ECh. 4 - Choose the element with the more negative (more...Ch. 4 - Prob. 90ECh. 4 - Choose the more metallic element in each pair....Ch. 4 - Prob. 92ECh. 4 - Prob. 93ECh. 4 - Prob. 94ECh. 4 - Prob. 95ECh. 4 - Prob. 96ECh. 4 - Both vanadium and its 3+ ion are paramagnetic. Use...Ch. 4 - Use electron configurations to explain why copper...Ch. 4 - Prob. 99ECh. 4 - Suppose you were trying to find a substitute for...Ch. 4 - Prob. 101ECh. 4 - Which pair of elements would you expect to have...Ch. 4 - Consider these elements: N, Mg, O, F, Al. Write...Ch. 4 - Consider these elements: P, Ca, Si, S, Ga. Write...Ch. 4 - Prob. 105ECh. 4 - Explain why vanadium (radius = 134 pm) and copper...Ch. 4 - The lightest noble gases, such as helium and neon,...Ch. 4 - The lightest halogen is also the most chemically...Ch. 4 - Prob. 109ECh. 4 - Prob. 110ECh. 4 - Prob. 111ECh. 4 - Write the electronic configurations of the six...Ch. 4 - You have cracked a secret code that uses elemental...Ch. 4 - The electron affinity of sodium is lower than that...Ch. 4 - Use Coulomb’s law to calculate the ionization...Ch. 4 - Prob. 116ECh. 4 - Consider the densities and atomic radii of the...Ch. 4 - Prob. 118ECh. 4 - Consider the metals in the first transition...Ch. 4 - Imagine a universe in which the value of ms can be...Ch. 4 - A carbon atom can absorb radiation of various...Ch. 4 - Only trace amounts of the synthetic element...Ch. 4 - What is the atomic number of the as yet...Ch. 4 - The trend in second ionization energy for the...Ch. 4 - Unlike the elements in groups 1A and 2A, those in...Ch. 4 - Using the data in Figures 3.19 and 3.20/,...Ch. 4 - Prob. 127ECh. 4 - Prob. 128ECh. 4 - The heaviest known alkaline earth metal is radium,...Ch. 4 - Predict the electronic configurations of the first...Ch. 4 - Prob. 131ECh. 4 - The outermost valence electron in atom A...Ch. 4 - Prob. 133ECh. 4 - Give a combination of four quantum numbers that...Ch. 4 - Prob. 135E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Does the information on alkali metals in Table 2-8 of the text confirm the general periodic trends in ionization energy and atomic radius? Explain.arrow_forwardCompare the elements B, Al, C, Si. (a) Which has the most metallic character? (b) Which has the largest atomic radius? (c) Arrange the three elements B, Al, and C in order of increasing first ionization energy.arrow_forwardWhich one of the following statements is the best explanation for the increase of ionisation energy of the alkaline earth metals when going up in a group? * a) The force of attraction on valence electrons decreases. b) The value of n decreases. c) The value of the effective nuclear charge increases. d) The value of the atomic radius decreases. e) All of these statements are good explanations for the observed trend.arrow_forward
- 4. What does presenter say about the relationship between the number of valence electrons of the main-group element and the group number of that element (except helium)?arrow_forwardDescribe the periodic trends for Atomic Radius and Ionization Energy. Define them and describe the trends as you move from left to right in a period and top to bottom in a group on the periodic table.arrow_forwardWhich of the following answers is true to describe the general trend for Ionization Energy for the Periodic Table? Group of answer choices Decreases from top to bottom within a group, Decreases from left to right across a period (row) Decreases from top to bottom within a group, Increases from left to right across a period (row) Increases from top to bottom within a group, Decreases from left to right across a period (row) Increases from top to bottom within a group, Increases from left to right across a period (row)arrow_forward
- 15. (a) b) Identify the element that is described by the following information. Refer to a periodic table if necessary. It is a group 14 (III A) metalloid in the 3rd period. It is a group 15 (VA) metalloid in the 5th period. It is the other metalloid in group 15 (VA). d) It is a halogen that exists in the liquid state at room temperature. 16. What is the relationship between electron arrangement and the organization of elements in the periodic table?arrow_forwardExplain why sulfur has a larger first ionization energy than silicon.arrow_forward(a) Identify the number of electrons in the ground-state outer shell of atomic oxygen (atomic number 8).(b) How many electrons are in the ground-state outer shell of fluorine?arrow_forward
- 2. The ionization energy of an element is defined as the amount of energy required to remove an electron from an individual atom. The following table gives the ionization energy (in units of kilojoules per mole) for five metals, listed in alphabetical order. Locate each of these metals on the periodic table and arrange them in order of rows and columns as in the periodic table. (a) Describe the periodic trend in the ionization energy of elements within a group. (b) Describe the periodic trend in the ionization energy of elements across a period. Metal Calcium Magnesium Potassium Sodium Strontium Ionization Energy 590 738 419 496 549 Materialsarrow_forwardExplain each of the following observations using principles of atomic structure. a) Potassium has a lower first-ionization energy than lithium. b) The ionic radius of N3- is larger than that of O2-. c) A calcium atom is larger than a zinc atom. d) Boron has a lower first-ionization energy than beryllium. e) Iodine is a solid at room temperature, bromine is a liquid and chlorine and fluorine are gases.arrow_forwardConsider Si, S, and P.1) Based purely on ideas of electron screening and effective nuclear charge, which of these elements do you expect to have the highest first ionization energy?2) Based on experimental data, P has the highest first ionization energy. Explain this observation in terms of electron configuration arguments.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Periodic Properties of Elements | Chemistry | IIT-JEE | NEET | CBSE | Misostudy; Author: Misostudy;https://www.youtube.com/watch?v=L26rRWz4_AI;License: Standard YouTube License, CC-BY
Periodic Trends: Electronegativity, Ionization Energy, Atomic Radius - TUTOR HOTLINE; Author: Melissa Maribel;https://www.youtube.com/watch?v=0h8q1GIQ-H4;License: Standard YouTube License, CC-BY