Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 39, Problem 8P
(a)
To determine
The time interval that muon has lived as measured in its reference frame.
(b)
To determine
The distance travelled by the earth as measured in frame of muon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 39 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 39.1 - Which observer in Figure 38.1 sees the balls...Ch. 39.1 - Prob. 39.2QQCh. 39.4 - Suppose the observer O on the train in Figure 38.6...Ch. 39.4 - Prob. 39.4QQCh. 39.4 - Prob. 39.5QQCh. 39.4 - Prob. 39.6QQCh. 39.4 - You are observing a spacecraft moving away from...Ch. 39.6 - You are driving on a freeway at a relativistic...Ch. 39.8 - Prob. 39.9QQCh. 39 - Prob. 1OQ
Ch. 39 - A spacecraft zooms past the Earth with a constant...Ch. 39 - Prob. 3OQCh. 39 - Prob. 4OQCh. 39 - Prob. 5OQCh. 39 - Prob. 6OQCh. 39 - Prob. 7OQCh. 39 - Prob. 8OQCh. 39 - Prob. 9OQCh. 39 - Prob. 10OQCh. 39 - Prob. 1CQCh. 39 - Prob. 2CQCh. 39 - Prob. 3CQCh. 39 - Prob. 4CQCh. 39 - Prob. 5CQCh. 39 - Prob. 6CQCh. 39 - Prob. 7CQCh. 39 - Prob. 8CQCh. 39 - Prob. 9CQCh. 39 - Prob. 10CQCh. 39 - Prob. 11CQCh. 39 - Prob. 12CQCh. 39 - Prob. 13CQCh. 39 - Prob. 14CQCh. 39 - Prob. 1PCh. 39 - In a laboratory frame of reference, an observer...Ch. 39 - The speed of the Earth in its orbit is 29.8 km/s....Ch. 39 - Prob. 4PCh. 39 - A star is 5.00 ly from the Earth. At what speed...Ch. 39 - Prob. 6PCh. 39 - Prob. 7PCh. 39 - Prob. 8PCh. 39 - Prob. 9PCh. 39 - An astronaut is traveling in a space vehicle...Ch. 39 - Prob. 11PCh. 39 - Prob. 12PCh. 39 - Prob. 13PCh. 39 - Prob. 14PCh. 39 - Prob. 15PCh. 39 - Prob. 16PCh. 39 - Prob. 17PCh. 39 - A cube of steel has a volume of 1.00 cm3 and mass...Ch. 39 - Prob. 19PCh. 39 - Prob. 20PCh. 39 - Prob. 21PCh. 39 - Review. In 1963, astronaut Gordon Cooper orbited...Ch. 39 - Prob. 23PCh. 39 - Prob. 24PCh. 39 - Prob. 25PCh. 39 - Prob. 26PCh. 39 - Prob. 27PCh. 39 - Prob. 28PCh. 39 - Prob. 29PCh. 39 - Prob. 30PCh. 39 - Prob. 31PCh. 39 - Prob. 32PCh. 39 - Prob. 33PCh. 39 - Prob. 34PCh. 39 - Prob. 35PCh. 39 - Prob. 36PCh. 39 - Prob. 37PCh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - (a) Find the kinetic energy of a 78.0-kg...Ch. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Consider electrons accelerated to a total energy...Ch. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PCh. 39 - An unstable particle with mass m = 3.34 1027 kg...Ch. 39 - Prob. 63PCh. 39 - Prob. 64PCh. 39 - Prob. 65PCh. 39 - Prob. 66APCh. 39 - Prob. 67APCh. 39 - Prob. 68APCh. 39 - Prob. 69APCh. 39 - Prob. 70APCh. 39 - Prob. 71APCh. 39 - Prob. 72APCh. 39 - Prob. 73APCh. 39 - Prob. 74APCh. 39 - Prob. 75APCh. 39 - Prob. 76APCh. 39 - Prob. 77APCh. 39 - Prob. 78APCh. 39 - Prob. 79APCh. 39 - Prob. 80APCh. 39 - Prob. 81APCh. 39 - Prob. 82APCh. 39 - An alien spaceship traveling at 0.600c toward the...Ch. 39 - Prob. 84APCh. 39 - Prob. 85APCh. 39 - Prob. 86APCh. 39 - Prob. 87APCh. 39 - Prob. 88CPCh. 39 - The creation and study of new and very massive...Ch. 39 - Prob. 90CPCh. 39 - Owen and Dina are at rest in frame S, which is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Owen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardA spacecraft is launched from the surface of the Earth with a velocity of 0.600c at an angle of 50.0° above the horizontal, positive x-axis. Another spacecraft is moving past with a velocity of 0.700c in the negative x direction. Determine the magnitude and direction of the velocity of the first spacecraft as measured by the pilot of the second spacecraft.arrow_forwardTwo powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forward
- As measured by observers in a reference frame S, a particle having charge q moves with velocity v in a magnetic field B and an electric field E. The resulting force on the particle is then measured to be F = q(E + v × B). Another observer moves along with the charged particle and measures its charge to be q also but measures the electric field to be E′. If both observers are to measure the same force, F, show that E′ = E + v × B.arrow_forwardOwen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forwardAn observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forward
- Joe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forwardSuppose our Sun is about to explode. In an effort to escape, we depart in a spaceship at v = 0.80c and head toward the star Tau Ceti, 12 lightyears away. When we reach the midpoint of our journey from the Earth, we see our Sun explode and, unfortunately, at the same instant we see Tau Ceti explode as well. (a) In the spaceship’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forwardCalculate the momentum of a proton moving with a speed of (a) 0.010c, (b) 0.50c, (c) 0.90c. (d) Convert the answers of (a)(c) to MeV/c.arrow_forward
- (a) How long would the muon in Example 28.1 have lived as observed on the Earth if its velocity was 0.0500c ? (b) How far would it have traveled as observed on the Earth? (c) What distance is this in the muon's frame?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardIf a spaceship is approaching the Earth at 0.100c and a message capsule is sent toward it at 0.100c relative to Earth, what is the speed of the capsule relative to the ship?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY