Concept explainers
(a)
The total travel time of pulse measured by observers in S frame.
(a)
Answer to Problem 85AP
The total travel time of pulse measured by observers in S frame is
Explanation of Solution
Let the distance travelled by the light from spacecraft to the mirror be equal to
Write the expression for the distance that the spacecraft travelled forward.
Here,
The spacecraft is travelling towards the mirror. After the reflection of pulse from the mirror it travels back to the approaching spacecraft.
Write the expression for the distance travelled by the pulse after reflection from the mirror.
Here,
Write the expression for the total distance travelled by the light before and after reflection.
Here,
Use expressions (I) and (II) in (III).
The light travels at speed of
Write the expression for the total distance travelled by light.
Here,
Left hand side of equations (IV) and (V) are same. Therefore equate the right hand side of these equations.
Solve equation (VI) for
Conclusion:
Substitute
Therefore, the total travel time of pulse measured by observers in S frame is
(b)
The total travel time of pulse measured by the observer in the spacecraft.
(b)
Answer to Problem 85AP
The total travel time of pulse measured by the observer in the spacecraft is
Explanation of Solution
The observer in the spacecraft moving towards the mirror will experience a contraction in length for the distance between the mirror and the spacecraft.
Write the expression for the contracted distance between the mirror and the spacecraft.
Here,
Here both mirror and pulse is moving. The speed of travel of light pulse is
Write the expression for the distance travelled by pulse towards the mirror measured by the observer in spacecraft.
Here,
Write the expression for the distance travelled by mirror towards the spacecraft measured by the observer in spacecraft.
Here,
Write the expression for the total distance travelled by light and mirror.
Here,
Use expressions (IX) and (X) in (XI).
Solve expression (XII) to find
Write the expression for the distance between the mirror and spacecraft when the light strikes mirror.
Here,
The same distance
Write the expression for the distance travelled by light after reflection from the mirror as observed by the observer in spacecraft.
Equate (XV) and (XIV) and solve for
Write the expression to find the total travel time of light.
Here,
Use expressions (XVI) and (XIII) in (XVII).
Use expression (XIII) in (XVIII).
Use expression (VIII) in (XIX).
Conclusion:
Substitute
Therefore, the total travel time of pulse measured by the observer in the spacecraft is
Want to see more full solutions like this?
Chapter 39 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Lab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forwardNo chatgpt pls will upvotearrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning