MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.67P
(a)
To determine
Expression for the energy of the photon in terms of the kinetic energy of one of the electron.
(b)
To determine
Which is greater the energy of the photon or kinetic energy of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron beam and a photon beam pass through iden- tical slits. On a distant screen, the first dark fringe occurs at the same angle for both of the beams. The electron speeds are much slower than that of light. (a) Express the energy of a photon in terms of the kinetic energy K of one of the electrons. (b) Which is greater, the energy of a photon or the kinetic energy of an electron?
What speed must an electron have if its momentum is to be the same as that of an X-ray photon with a wavelength of 0.35 nm?
A radio transmitter broadcasts with a power of 9.73 kW and a frequency of 91.5 MHz. At what distance will a circular dish antenna
with a diameter of 100 m intercept 1 photon/s. Give your answer in units of light-years (e.g. 0.450 for 0.450 light years)
Round your answer to 3 decimal places.
Add your answer
Question 2
A light beam moving with velocity c along the x-axis approaches a space-ship moving with velcity 0.9c along the y-axis. The velocity
of the light beam relative to the space ship is:
A >c
B) less than c but greater than 0.9c
c) <.9c
Chapter 39 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) 620 nanometers (nm)? (b) What are the energy and momentum of a photon of red light of wavelength What is the wavelength (in nm) of photons of energy 2.40 eV? 1.arrow_forwardIn the photoelectric phenomenon, assume that the intensity of the incident light is fixed, but the frequency is increased. Is the stopping voltage affected and why?arrow_forwardA beam of electrons is accelerated from rest through a potential difference of 0.100 kV and then passes through a thin slit. When viewed far from the slit, the diffracted beam shows its first diffraction minima at+-14.6° from the original direction of the beam. (a) Do we need to use relativity formulas? How do you know? (b) How wide is the slit?arrow_forward
- A beam of electrons moving at a uniform speed of 1617 m/s passes through a pair of vertical thin slits that are 2.1 x 105 m apart directed toward a screen 1.4 m away. At what horizontal distance away from the centerline does the first bright region of electrons appear on the screen? 0.030 m 0.021 m 0.019 mm 0.013 mm 0.042 marrow_forwardAn x-ray source generates EM radiation with a wavelength of 45.0 pm (10-12 m). h = c = qelectron = e = 1.602x10-19 C, ke = 8.99x109 N·m2/C2, What is the energy associated with this x-ray wave? What potential difference must be applied to the electrons in the x-ray tube to produce this x-ray? The air gap in the x-ray tube is 30.0 μ How much charge must be present on the plates to create this potential difference for a single electron? What is the force on a single electron when it is at 30.0 μm from the positive plate?arrow_forwardElectrons are ejected from a metallic surface with speeds ranging up to 4.60 x 105 m/s when light with a wavelength of 625 nm is used. (a) What is the work function of the surface? (b) What is the cutoff frequency for this surface?arrow_forward
- Diffraction effects become significant when the width of an aperture is comparable to the wavelength of the waves being diffracted. (a) At what speed will the de Broglie wavelength of a 65-kg student be equal to the 0.76-m width of a doorway? (b) At this speed, how much time will it take the student to travel a distance of 1.0 mm? (For comparison, the age of the universe is approximately 4 * 10^17 s.)arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.25 x 10¹7 Hz. nm (b) What is its wavelength in ice? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ice? O The energy of the photon does not change. O The energy of the photon changes.arrow_forwardElectron coming out of a material has a velocity of 5.6x105 ms-1 when it is illuminated by a light of 3.45x1014 Hz. What is the material's work function?arrow_forward
- An x - ray tube is operated at 5.00 x 104 V. (a) Find the minimum wavelength of the radiation emitted by this tube. (b) If the radiation is directed at a crystal, the first - order maximum in the reflected radiation occurs when the grazing angle is 2.5°. What is the spacing between reflecting planes in the crystal?arrow_forwardQ1(A). Prove using step-by-step solution that f(v) = E/h is equal to 1.80x1015 Hz, therefore λ = C/f is equal to 254nm. Q1(B). Refer to the visible light spectrum to determine what region of EM radiation does this light fall? Q1(C). Show step-by step solution to integrate the velocity function if the initial position of the particle is s(0) = 9. Find the particle position at: (1) t = 1 sec ; (2) t = 5 secarrow_forwardIn an experiment on the photoelectric effect, a metal is illuminated by visible light of different wavelengths. A photoelectron has a maximum kinetic energy of 0.9 eV when red light of wavelength 640 nm is used. With blue light of wavelength 420 nm, the maximum kinetic energy of the photoelectron is 1.9 eV. Use this information to calculate an experimental value for the Planck constant h. [arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning