MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.57P
(a)
To determine
No of photons per second would the star radiate if it radiate all its energy at the peak intensity wavelength.
(b)
To determine
Ratio between power radiated by the star Betelgeuse to the power radiated by the sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the energy, in electron volts, of a photon whose frequency is (a) 620
THz, (b) 3.10 GHz, and (c) 46.0 MHZ. (d) Determine the corresponding
wavelengths for these photons and state the classification of each on the
electromagnetic spectrum.
Calculate the energy of a photon of frequency 3.5 x 1015 Hz, in electronvolts (eV). Do an online search to find the conversion factor between electronvolts and joules.
This question relates to the practicality of searching for intelligent life in other solar systems by detecting their radio broadcasts (or aliens find us from ours). The closest stars are 4 light years away from us. How far away must you be from a 881 kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume that the photons spread out spherically.
Chapter 39 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A γ-ray photon has a momentum of 8.5 × 10-21 kg⋅m/s. What is its wavelength in meters? Calculate its energy in mega-electron volts.arrow_forwardA particular blackbody has a radiation spectrum that peaks at a wavelength of 660 nm. Part (a) What is the temperature of the blackbody in units of Kelvin? Part (b) If the temperature of a blackbody is 4300 K, at what wavelength, in units of nanometers, does it radiate the most energy?arrow_forwardIt's a complete question. Need help asap.arrow_forward
- This question relates to the practicality of searching for intelligent life in other solar systems by detecting their radio broadcasts (or aliens find us from ours). The closest stars are 4 light years away from us. How far away must you be from a 460 kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume that the photons spread out spherically. The area of a sphere is 4??24πr2. b) How many lightyears away is this?arrow_forwardYou have a fluorescent molecule that has an excitation wavelength of 320nm and an emission wavelength of 550nm. (a) What would be the wavelength of photons you would use to excite this fluorophore using two- photon microscopy? (b) Suppose that, unfortunately, the tissue you want to image will absorb any light that has more energy than 3.5*1019J. Will two-photon microscopy still work? What's the wavelength of the highest energy of light that will penetrate the tissue? (c) To what part of the EM spectrum do these photons belong? (Give answers for one excitation with one photon, two photons, and the emission wavelength.)arrow_forwardJust like the optical part of the spectrum, radio waves can be described in terms of photons - although they can be very difficult to detect. Consider the photons in radio waves from an FM station that has a 88.3-MHz broadcast frequency. Find the energy in joules of a photon in the radio waves.arrow_forward
- The most massive stars in the Universe have a surface temperature that can reach over 50 000 K. Life on planets like Earth cannot exist at 1AU from such stars, it's too hot. Find the emitted power per square meter of peak intensity for a similar star with 43000 K that emits thermal radiation. Express your answer to two significant figures.arrow_forwardWhen an atom emits a photon in a transition from a state of energy E1 to a state of energy E2, the photon energy is not precisely equal to E1-E2. Conservation of momentum requires that the atom must recoil, and so some energy must go into recoil kinetic energy KR. Show that KR is roughly equal to (E1-E2)2/2Mc2, where M is the mass of the atom. Evaluate this recoil energy for the n=2 to n=1 transition of hydrogen.arrow_forwardIf a photon has energy of 3.3 eV, calculate its frequency. Report your answer in multiples of 1012 Hz. (For example, if your answer is 1.2 x 10¹3 Hz, you would enter 12 into the answer blank.) Your Answer: Answerarrow_forward
- Calculate the momentum of a photon of frequency 2.5 x 1015 m/s and type in just the value of p. Hz in kg m/s. Write your value as px 10-27 kgarrow_forwardDo it fast, I will rate you.arrow_forwardWhat wavelength (in nanometers) is the peak intensity of the light coming from a star whose surface temperature is 8888 Kelvin? Calculate total energy radiated per unit area by a black body at this temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you