UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.30E
(a)
To determine
The wavelength of the
(b)
To determine
The frequency of
(c)
To determine
The energy of the photon for the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use Balmer’s formula to calculate (a) the wavelength, (b) the frequency, and (c) the photon energy for the Hg line of the Balmer series for hydrogen.
A triply ionised beryllium atom (Be+++, Z = 4) has only one electron in
orbit about the nucleus. If the electron decays from the n
7 level to the
first excited state (n = 2), calculate the wavelength of the photon emitted.
Please give your answer in units of nm, rounded to one decimal place.
Answer:
If the zirconium atom ground state has S= 1 and L = 3, what are the permissible values of J? Write the spectroscopic notation for these possible values of S, L, and J. Which one of these is likely to represent the ground state?
Chapter 39 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forwardCalculate the wavelength of the third line of the Paschen series for hydrogen.arrow_forwardWhat is the longest - wavelength line in nanometers in the infrared series for hydrogen where m = 3?arrow_forward
- Question in photoarrow_forwardA) What is the least amount of energy, in electron volts, that must be given to a hydrogen atom which is initially in its ground level so that it can emit the HαHα line in the Balmer series? Express your answer in electronvolts to three significant figures. B) How many different possibilities of spectral-line emissions are there for this atom when the electron starts in the n = 3 level and eventually ends up in the ground level?arrow_forwardConsider the Balmer series discussed in the book (and Prof. Scherer's lecture notes), where the frequencies are given by: x (3.29 × 1015 s-1) n = 3,4,5, .. v = Let us focus only on the spectral lines and transitions corresponding to the Balmer series. a) Suppose the Balmer series of hydrogen is studied using a Franck-Hertz experiment. What is the threshold voltage required for n=3? How about n=4? b) The Lyman Series frequencies are given by v = |1- x (3.29 x 1015 s-1). Describe what is different about these two series of emission frequencies of photons from the hydrogen atom? That is, what distinguishes one series from the other? (Hint: it may help to think about the Bohr model interpretation of transitions.)arrow_forward
- The wavelengths of the Paschen series for hydrogen are given by (a) Calculate the wavelengths of the first three lines in this series. (b) Identify the region of the electromagnetic spectrum in which these lines appear.arrow_forward(b) Prove that the energy of a trapped particle is quantized. Find the possible relations. Q#2 (a) Explain different types of spectral series of hydrogen atom. Find formula for wavelength of each series. (b) Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H. line. Q#3 (a) Explain Frank Hertz experiment in detail. Discuss its findings. (b) Explain the difference between a MASER and a LASER. Who was the inventor of MASER? Explain both phenomenon in detail.arrow_forwarda) The element helium is named for the Sun because that is where it was first observed. What is the shortest wavelength that one would expect to observe from a singly ionized helium atom in the atmosphere of the Sun? b) Suppose light with a wavelength of 388.9 nm is observed from singly ionized helium. What are the initial and final values of the quantum number nn corresponding to this wavelength? Enter your answers numerically separated by a commaarrow_forward
- (a) Construct an energy-level diagram for the He+ ion, for which Z = 2, using the Bohr model. (b) What is the ionization energy for He1?arrow_forwardAn electron is in the nth Bohr orbit of the hydrogen atom. n3 (a) Show that the period of the electron is T = to n³ and determine the numerical value of to. 153 as (b) On average, an electron remains in the n = 2 orbit for approximately 8 us before it jumps down to the n = 1 (ground-state)orbit. How many revolutions does the electron make in the excited state? 8.26e+09 × (c) Define the period of one revolution as an electron year, analogous to an Earth year being the period of the Earth's motion around the Sun. Explain whether we should think of the electron in the n = 2 orbit as "living for a long time."arrow_forwardFind the ratio of the photon frequency of the 8th line of the Paschen series to the photon frequency of the 3rd line of the Balmer series. Given: h = 4.14 x 1015 ev.s = 6.63 x 10 34 J.s Select one: O a. 0.491 Ob.0.505 Oc.0.795 Od. 0.779arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill