UNIVERSITY PHYSICS UCI PKG
11th Edition
ISBN: 9781323575208
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 39.25E
(a)
To determine
The energy needed to ionize an atom from the ground state.
(b)
To determine
The possible energies that the photons can have.
(c)
To determine
What will happen if a photon strikes a searsium atom with
(d)
To determine
The limits of work function for the searsium metal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hypothetical atom (Fig. ) has energy levels at 0.00 eV (the ground level), 1.00 eV, and 3.00 eV. (a) What are the frequencies and wavelengths of the spectral lines this atom can emit when excited? (b) What wavelengths can this atom absorb if it is in its ground level?
A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?
The Bohr model of the single-electron, many-proton ion predicts the emitted/absorbed
photon wavelength for an electron transition between the n,and n2 energy levels is
=
where R. = 1.097 × 107 m¬1 is the Rydberg constant and Z is the atomic number (the
number of protons found in the nucleus). Calculate the ground state energy of a triply
ionised beryllium atom, Be3+ (a beryllium atom with three electrons removed).
Chapter 39 Solutions
UNIVERSITY PHYSICS UCI PKG
Ch. 39.2 - Prob. 39.2TYUCh. 39.3 - Prob. 39.3TYUCh. 39.4 - Prob. 39.4TYUCh. 39.5 - Prob. 39.5TYUCh. 39.6 - Prob. 39.6TYUCh. 39 - Prob. 39.1DQCh. 39 - Prob. 39.2DQCh. 39 - Prob. 39.3DQCh. 39 - When an electron beam goes through a very small...Ch. 39 - Prob. 39.5DQ
Ch. 39 - Prob. 39.6DQCh. 39 - Prob. 39.7DQCh. 39 - Prob. 39.8DQCh. 39 - Prob. 39.9DQCh. 39 - Prob. 39.10DQCh. 39 - Prob. 39.11DQCh. 39 - Prob. 39.12DQCh. 39 - Prob. 39.13DQCh. 39 - Prob. 39.14DQCh. 39 - Prob. 39.15DQCh. 39 - Prob. 39.16DQCh. 39 - Prob. 39.17DQCh. 39 - Prob. 39.18DQCh. 39 - Prob. 39.19DQCh. 39 - Prob. 39.20DQCh. 39 - Prob. 39.21DQCh. 39 - When you check the air pressure in a tire, a...Ch. 39 - Prob. 39.1ECh. 39 - Prob. 39.2ECh. 39 - Prob. 39.3ECh. 39 - Prob. 39.4ECh. 39 - Prob. 39.5ECh. 39 - Prob. 39.6ECh. 39 - Prob. 39.7ECh. 39 - Prob. 39.8ECh. 39 - Prob. 39.9ECh. 39 - Prob. 39.10ECh. 39 - Prob. 39.11ECh. 39 - Prob. 39.12ECh. 39 - Prob. 39.13ECh. 39 - Prob. 39.14ECh. 39 - Prob. 39.15ECh. 39 - Prob. 39.16ECh. 39 - Prob. 39.17ECh. 39 - Prob. 39.18ECh. 39 - Prob. 39.19ECh. 39 - Prob. 39.20ECh. 39 - Prob. 39.21ECh. 39 - Prob. 39.22ECh. 39 - Prob. 39.23ECh. 39 - Prob. 39.24ECh. 39 - Prob. 39.25ECh. 39 - Prob. 39.26ECh. 39 - Prob. 39.27ECh. 39 - Prob. 39.28ECh. 39 - Prob. 39.29ECh. 39 - Prob. 39.30ECh. 39 - Prob. 39.31ECh. 39 - Prob. 39.32ECh. 39 - Prob. 39.33ECh. 39 - Prob. 39.34ECh. 39 - Prob. 39.35ECh. 39 - Prob. 39.36ECh. 39 - Prob. 39.37ECh. 39 - Prob. 39.38ECh. 39 - Prob. 39.39ECh. 39 - Prob. 39.40ECh. 39 - Prob. 39.41ECh. 39 - Prob. 39.42ECh. 39 - Prob. 39.43ECh. 39 - Prob. 39.44ECh. 39 - Prob. 39.45ECh. 39 - Prob. 39.46ECh. 39 - Prob. 39.47ECh. 39 - Prob. 39.48ECh. 39 - Prob. 39.49ECh. 39 - Prob. 39.50PCh. 39 - Prob. 39.51PCh. 39 - Prob. 39.52PCh. 39 - Prob. 39.53PCh. 39 - Prob. 39.54PCh. 39 - Prob. 39.55PCh. 39 - Prob. 39.56PCh. 39 - Prob. 39.57PCh. 39 - Prob. 39.58PCh. 39 - Prob. 39.59PCh. 39 - An Ideal Blackbody. A large cavity that has a very...Ch. 39 - Prob. 39.61PCh. 39 - Prob. 39.62PCh. 39 - Prob. 39.63PCh. 39 - Prob. 39.64PCh. 39 - Prob. 39.65PCh. 39 - Prob. 39.66PCh. 39 - Prob. 39.67PCh. 39 - Prob. 39.68PCh. 39 - Prob. 39.69PCh. 39 - Prob. 39.70PCh. 39 - Prob. 39.71PCh. 39 - Prob. 39.72PCh. 39 - Prob. 39.73PCh. 39 - Prob. 39.74PCh. 39 - Prob. 39.75PCh. 39 - Prob. 39.76PCh. 39 - Prob. 39.77PCh. 39 - Prob. 39.78PCh. 39 - Prob. 39.79PCh. 39 - Prob. 39.80PCh. 39 - A particle with mass m moves in a potential U(x) =...Ch. 39 - Prob. 39.82PCh. 39 - Prob. 39.83PCh. 39 - DATA In the crystallography lab where you work,...Ch. 39 - Prob. 39.85PCh. 39 - Prob. 39.86CPCh. 39 - Prob. 39.87CPCh. 39 - Prob. 39.88PPCh. 39 - Prob. 39.89PPCh. 39 - Prob. 39.90PPCh. 39 - Prob. 39.91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a) An electron in a hydrogen atom has energy E= -3.40 eV, where the zero of energy is at the ionization threshold. In the Bohr model, what is the angular momentum of the electron? Express your result as a multiple of ħ. Ans. b) What is the deBroglie wavelength of the electron when it is in this state? Ans. c) When the electron is in this state, what is the ratio of the circumference of the orbit of the electron to the deBroglie wavelength of the electron? Ans. d) The electron makes a transition from the state with energy E= -3.40 eV to the ground state, that has energy -13.6 eV. What is the wavelength of the photon emitted during this transition? Ans.arrow_forwardThe emergence of line spectra from a gas when a current passes through it was an observed phenomenon waiting for an explanation in the early 20th century. The atomic line spectra coming from elements such as hydrogen had been analyzed since the late 19th century. By studying the wavelength of the emerging radiation of hydrogen, experimenters found (often by trial and error) that the wavelengths in those spectra were described by the formula 1 = R ( 1/2 - 1/2 ) where R is known as the Rydberg constant. It has a value of R=1.097 × 107 m-¹. The variables n₁ and no are integer numbers (n₁ = 1, 2, 3, 4, ...). As experiments continued, scientists began to see more and more characteristic lines emerging from the hydrogen spectrum. Each of them corresponded to a wavelength predicted by this formula with some integer values for m₁ and ₂. In 1913, Niels Bohr provided an explanation for the observations made in experiments by proposing that each electron in an atom had only certain allowable…arrow_forwardA solid metal sphere emits 1.42 ✕ 1020 photons every second with a radiating power of 2.53 W. (a)Determine the energy associated with each photon. eV (b)Assuming the sphere's power output is associated with the peak wavelength, determine the temperature of the sphere at which this wavelength is emitted. Karrow_forward
- Chapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forwardWhat is the energy in eV and wavelength in μm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n = 5 to the n = 8 energy level? HINT (a) energy in eV eV (b) wavelength in um umarrow_forwardThe energy levels of the Bohr model for the atom can be expressed mathematically as En -13.6 eV, where Z is the atomic number, and n is the quantum number. This model is reasonably accurate for hydrogen and for singly ionized helium. The photon associated with the transition of an electron from the ground state to the first excited state in singly ionized helium has a different wavelength than that associated with a similar transition in hydrogen. Which of the following correctly describes the wavelengths of these two photons in terms of the energy level diagrams for hydrogen and helium? The photon absorbed by hydrogen has a longer wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. B The photon absorbed by hydrogen has a shorter wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. The photon…arrow_forward
- The threshold frequency for indium is 9.96 x 10^14 s^-1. How much energy is needed to eject one mole of electrons from the surface of indium? Will indium display photoelectric effect with UV light? How about infrared light?arrow_forwardThe energy-level scheme for the hypothetical one electron element Searsium is shown in the figure above. The potential energy is taken to be zero for an electron at an infinite distance from the nucleus. (a) How much energy (in electron volts) does it take to ionize an electron from the ground level? (b) An 18-eV photon is absorbed by a Searsium atom in its ground level. As the atom returns to its ground level, what possible energies can the emitted photons have? Assume that there can be transitions between all pairs of levels. (c) What will happen if a photon with an energy of 8 eV strikes a Searsium atom in its ground level? Why? (d) Photons emitted in the Searsium transitions n = 3 ⟶⟶ n = 2 and n = 3 ⟶⟶ n = 1 will eject photoelectrons from an unknown metal, but the photon emitted from the n = 4 ⟶⟶ n = 3 transition will not. What are the limits (maximum and minimum possible values) of the work function of the metal?arrow_forwardA hypothetical atom has two energy levels, with a transition wavelength between them of 580 nm. In a particular sample at 300 K, 4.0 * 10^20 such atoms are in the state of lower energy. (a) How many atoms are in the upper state, assuming conditions of thermal equilibrium? (b) Suppose, instead, that 3.0*10^20 of these atoms are “pumped” into the upper state by an external process, with 1.0 * 10^20 atoms remaining in the lower state. What is the maxi-mum energy that could be released by the atoms in a single laser pulse if each atom jumps once between those two states (either via absorption or via stimulated emission)?arrow_forward
- a. The electron of a hydrogen atom is excited into a higher energy level from a lower energy level. A short time later the electron relaxes down to the no = 1 energy level, releasing a photon with a wavelength of 93.83 nm. Compute the quantum number of the energy level the electron relaxes from, nhi. Note: the Rydberg constant in units of wavenumbers is 109,625 cm-1 nhi =16 b. What would the wavenumber, wavelength and energy of the photon be if instead no = 1 and nhi = 4? V: 6.9121e14 x (cm-¹) λ: (nm) E: 45.8e-20 ✓ (1)arrow_forwardThe light observed that is emitted by a hydrogen atom is explained by a simple model of its structure with one proton in its nucleus and an electron bound to it, but only with internal energies of the atom satisfying EH=−RH/n2EH=−RH/n2 where RHRH is the Rydberg constant and nn is an integer such as 1, 2, 3 ... and so on. When a hydrogen atom in an excited state emits light, the photon carries away energy and the atom goes into a lower energy state. Be careful about units. The Rydberg constant in eV is 13.605693009 eV That would be multiplied by the charge on the electron 1.602× 10-19 C to give 2.18× 10-18 J A photon with this energy would have a frequency f such that E=hf. Its wavelength would be λ = c/f = hc/E. Sometimes it is handy to measure the Rydberg constant in units of 1/length for this reason. You may see it given as 109737 cm-1 if you search the web, so be aware that's not joules. The following questions are intended to help you understand the connection between…arrow_forward= = Imagine that we have a box that emits electrons in a definite but unknown spin state y). If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz +ħ and 80% to have S₂ -ħ. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx Determine the state vector for electrons emerging from the box. You may assume that the vector components are real. -1/ħ. = -arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill