Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 39, Problem 32E
To determine
The estimation of the temperature in a gas of particles such that the thermal energy
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron and a positron are separated by distance r. Find the ratio of the gravitational force to the electric force between them. From the result, what can you conclude concerning the forces acting between particles detected in a bubble chamber? (Should gravitational interactions be considered?)
Calculate the mass in GeV/v2 of a virtual carrier particle that has a range limited to 10-30 m by the Heisenberg uncertainty principle. Such a particle might be involved in the unification of the strong and electroweak forces.
The range of the nuclear strong force is believed to be about 1.2 x 10-15 m. An early theory of nuclear physics proposed that the particle that “mediates” the strong force (similar to the photon mediating the electromagnetic force) is the pion. Assume that the pion moves at the speed of light in the nucleus, and calculate the time ∆t it takes to travel between nucleons. Assume that the distance between nucleons is also about 1.2 x 10-15 m. Use this time ∆t to calculate the energy ∆E for which energy conservation is violated during the time ∆t. This ∆E has been used to estimate the mass of the pion. What value do you determine for the mass? Compare this value with the measured value of 135 MeV/c2 for the neutral pion.
Chapter 39 Solutions
Essential University Physics (3rd Edition)
Ch. 39 - Prob. 1FTDCh. 39 - Prob. 2FTDCh. 39 - Prob. 3FTDCh. 39 - Prob. 4FTDCh. 39 - Prob. 5FTDCh. 39 - Prob. 6FTDCh. 39 - Prob. 7FTDCh. 39 - Prob. 8FTDCh. 39 - Name the fundamental force involved in (a) binding...Ch. 39 - Prob. 10FTD
Ch. 39 - Prob. 11FTDCh. 39 - Prob. 12FTDCh. 39 - Prob. 13FTDCh. 39 - Prob. 14FTDCh. 39 - Describe the origin of the cosmic microwave...Ch. 39 - Prob. 16FTDCh. 39 - Prob. 17FTDCh. 39 - The radiation that we observe as the cosmic...Ch. 39 - Prob. 19FTDCh. 39 - Prob. 20FTDCh. 39 - Prob. 21ECh. 39 - Prob. 22ECh. 39 - Prob. 23ECh. 39 - Prob. 24ECh. 39 - Prob. 25ECh. 39 - Prob. 26ECh. 39 - Prob. 27ECh. 39 - Prob. 28ECh. 39 - Prob. 29ECh. 39 - Prob. 30ECh. 39 - Prob. 31ECh. 39 - Prob. 32ECh. 39 - Prob. 33ECh. 39 - Prob. 34ECh. 39 - Prob. 35ECh. 39 - Prob. 36ECh. 39 - Prob. 37ECh. 39 - Prob. 38PCh. 39 - Prob. 39PCh. 39 - Prob. 40PCh. 39 - Prob. 41PCh. 39 - Prob. 42PCh. 39 - Prob. 43PCh. 39 - Prob. 44PCh. 39 - Prob. 45PCh. 39 - Prob. 46PCh. 39 - Prob. 47PCh. 39 - Prob. 48PCh. 39 - Prob. 49PCh. 39 - Prob. 50PCh. 39 - Prob. 51PCh. 39 - Prob. 52PCh. 39 - Prob. 53PCh. 39 - Prob. 54PCh. 39 - Prob. 55PCh. 39 - Prob. 56PCh. 39 - Prob. 57PCh. 39 - Prob. 58PCh. 39 - Prob. 59PCh. 39 - Prob. 60PCh. 39 - Prob. 61PPCh. 39 - Prob. 62PPCh. 39 - Prob. 63PPCh. 39 - Prob. 64PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The Σ* particle has a rest energy of 1385 MeV and a lifetime of 2.0 × 10-23 s. What would be a typical range of outcomes of measurements of the Σ* rest energy?arrow_forwardThe peak intensity of the CMBR occurs at a wavelength of 1.1 mm. (a) What is the energy in eV of a 1.1-mm photon? (b) There are approximately 109 photons for each massive particle in deep space. Calculate the energy of 109 such photons. (c) If the average massive particle in space has a mass half that of a proton, what energy would be created byconverting its mass to energy? (d) Does this imply that space is “matter dominated”? Explain briefly.arrow_forwardSolve this 2 mcq question please. choose the answer only.arrow_forward
- Calculate the 1st-order difference for the mean value of energy between a system of N non-identical spinning particles and a system of N spinless identical boson particles at d=λ. These two systems are in a box with volume V=L³ and particle mass marrow_forwardCalculate the radius of the n =1 orbit for a muon in a uranium ion (Z=92 ).arrow_forwardConsider an ultrahigh-energy cosmic ray entering the Earth’s atmosphere (some have energies approaching a joule).Construct a problem in which you calculate the energy of the particle based on the number of particles in an observed cosmic ray shower. Among the things to consider are the average mass of the shower particles, the average number per square meter, and the extent (number of square meters covered) of the shower. Express the energy in eV and joules.arrow_forward
- An electron-positron collider runs with symmetric beam energies of E(e^+) = E(e^−) = 102 GeV.At each orbit ∆E = 2.2 GeV has to be replaced for each beam particle by the accelerating units.The accelerator has 24 units available; each unit can replace an energy of ∆E = 100 MeV perorbit. a). The researchers want to create the Standard-Model Higgs boson but don’t know its massyet. Argue why the production rate via the direct process e +e− → H is negligible and name the process which can be used instead. Draw a Feynman diagram of this process. State the mechanism responsible for the energy loss and state how the energy loss per orbit scales with the beam energy. b). Name two possible final states of this process and how they can be detected in a modernparticle detector, which consists of a tracker, an EM calorimeter, a hadronic calorimeterand a muon system in radial direction. Calculate the maximum mass of the Higgs Boson, which the experiment can create c). When no Higgs is found in the…arrow_forwardProvide the answers in 90 minutes, and count as 2 questions if needed.arrow_forward(6)arrow_forward
- Twelve electron antineutrinos from Supernova 1987A were detected by the Kamiokande neutrino detector in Japan. This experiment consisted of a tank filled with 3 kton of water, and surrounded by photomultiplier tubes. The photomultipliers detect the Cerenkov radiation emitted by a recoiling positron that is emitted after a proton absorbs an antineutrino from the supernova. Estimate how many people on Earth could have perceived a flash of light, due to the Cerenkov radiation produced by the same process, when an antineutrino from the supernova traveled through their eyeball. Assume that eyeballs are composed primarily of water, each weighs about 10 g, and that the Earth’s population was 5 billion in 1987.arrow_forwardA virtual particle having an approximate mass of 1014GeV/?2 may be associated with the unification of the strong and electroweak forces. For what length of time could this virtual particle exist (in temporary violation of the conservation of mass-energy as allowed by the Heisenberg uncertainty principle)?arrow_forwardThe E particle has a rest energy of 1385 MeV and a lifetime of 2 x 10-2³s. What would be a typical range of outcomes of measurements of the Σ rest energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning