Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781337026345
Author: Katz
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 38, Problem 96PQ

(a)

To determine

The angle of refraction θs in the sapphire crystal.

(a)

Expert Solution
Check Mark

Answer to Problem 96PQ

The angle of refraction θs, in the sapphire crystal is 15.0°.

Explanation of Solution

Write the expression for Snell’s law that relates the angle of incidence and angle of refraction of a light ray when it travels from one medium to the other medium.

    nasinθa=nssinθs                                                                             (I)

Here, na is the refractive index of the air medium, ns is the refractive index of the sapphire crystal medium, θa is the angle of incidence of air and θs is the angle of refraction of sapphire crystal.

Solve the above equation to find θs.

    nasinθa=nssinθssinθs=sinθa(nans)θs=sin1(sinθa(nans))                                                            (II)

Conclusion:

Substitute 1.760 for ns, 27.0° for θa, 1.00 for na in equation (II).

Here, ns=1.495 and θa=27.0° are taken from given data and na=1.00 for the air medium.

θs=sin1(sinθa(nans))=sin1(sin27.0°(1.001.760))=sin1(0.45390(0.56818))=15.0°

Therefore, the angle of refraction θs, in the sapphire crystal is 15.0°.

(b)

To determine

The angle of incidence of the light ray at the sapphire air interface.

(b)

Expert Solution
Check Mark

Answer to Problem 96PQ

The angle of incidence of the light ray at the sapphire air interface is 15.0°.

Explanation of Solution

Consider the diagram.

Physics for Scientists and Engineers: Foundations and Connections, Chapter 38, Problem 96PQ

Figure-(1)

The above figure defines the light ray incident on the rectangular sapphire crystal at an angle of incidence is θa=27.0° and the angle of refraction of the light ray inside the crystal is θs.

Inside the sapphire crystal the ray travels in a straight line because the medium is same. So the angle of refraction at the air sapphire interface θs is equal to the angle of incidence at the sapphire interface θa.

    θs=θa

Therefore, the angle of incidence of the light ray at the sapphire air interface is 15.0°.

(c)

To determine

The angle of refraction of the light ray at crystal air interface.

(c)

Expert Solution
Check Mark

Answer to Problem 96PQ

The angle of refraction of the light ray at crystal air interface is 27.0°.

Explanation of Solution

Write the expression for Snell’s law that relates the angle of incidence and angle of refraction of a light ray when it travels from one medium to the other medium.

    na,1sinθa,1=ns,1sinθs,1 (III)

Here, na is the refractive index of the air medium, ns is the refractive index of the sapphire crystal medium, θa is the angle of incidence of air and θs is the angle of refraction of sapphire crystal.

Solve the above equation to find sinθs,1.

    na,1sinθa,1=ns,1sinθs,1sinθs,1=sinθa,1(na,1ns,1)θs,1=sin1(sinθa,1(na,1ns,1))                                                                    (IV)

Conclusion:

Substitute 1.00 for ns,1, 14.94° for θa,1,1.760 for na,1 in equation (IV).

    θs,1=sin1(sinθa,1(na,1ns,1))=sin1(sin14.94°(1.7601.00))=sin1((0.2578)(1.760))=27.0°

Therefore, the angle of refraction of the light ray at the crystal air interface is 27.0°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote I
No chatgpt pls will upvote I
How would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?

Chapter 38 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 38 - Prob. 3PQCh. 38 - A light ray is incident on an interface between...Ch. 38 - Prob. 5PQCh. 38 - Prob. 6PQCh. 38 - Prob. 7PQCh. 38 - A ray of light enters a liquid from air. If the...Ch. 38 - Prob. 9PQCh. 38 - Figure P38.10 on the next page shows a...Ch. 38 - Prob. 11PQCh. 38 - Prob. 12PQCh. 38 - Prob. 13PQCh. 38 - Prob. 14PQCh. 38 - Prob. 15PQCh. 38 - A fish is 3.25 m below the surface of still water...Ch. 38 - N A fish is 3.25 m below the surface of still...Ch. 38 - A beam of monochromatic light within a fiber optic...Ch. 38 - Prob. 19PQCh. 38 - Prob. 20PQCh. 38 - Consider a light ray that enters a pane of glass...Ch. 38 - Prob. 22PQCh. 38 - Prob. 23PQCh. 38 - Prob. 24PQCh. 38 - Prob. 25PQCh. 38 - Prob. 26PQCh. 38 - Prob. 27PQCh. 38 - Prob. 28PQCh. 38 - The wavelength of light changes when it passes...Ch. 38 - Prob. 30PQCh. 38 - Light is incident on a prism as shown in Figure...Ch. 38 - Prob. 32PQCh. 38 - Prob. 33PQCh. 38 - Prob. 34PQCh. 38 - Prob. 35PQCh. 38 - Prob. 36PQCh. 38 - Prob. 37PQCh. 38 - A Lucite slab (n = 1.485) 5.00 cm in thickness...Ch. 38 - Prob. 39PQCh. 38 - Prob. 40PQCh. 38 - The end of a solid glass rod of refractive index...Ch. 38 - Prob. 42PQCh. 38 - Figure P38.43 shows a concave meniscus lens. If...Ch. 38 - Show that the magnification of a thin lens is...Ch. 38 - Prob. 45PQCh. 38 - Prob. 46PQCh. 38 - Prob. 47PQCh. 38 - The radius of curvature of the left-hand face of a...Ch. 38 - Prob. 49PQCh. 38 - Prob. 50PQCh. 38 - Prob. 51PQCh. 38 - Prob. 52PQCh. 38 - Prob. 53PQCh. 38 - Prob. 54PQCh. 38 - Prob. 55PQCh. 38 - Prob. 56PQCh. 38 - Prob. 57PQCh. 38 - Prob. 58PQCh. 38 - Prob. 59PQCh. 38 - Prob. 60PQCh. 38 - Prob. 61PQCh. 38 - Prob. 62PQCh. 38 - Prob. 63PQCh. 38 - Prob. 64PQCh. 38 - Prob. 65PQCh. 38 - Prob. 66PQCh. 38 - Prob. 67PQCh. 38 - Prob. 68PQCh. 38 - CASE STUDY Susan wears corrective lenses. The...Ch. 38 - A Fill in the missing entries in Table P38.70....Ch. 38 - Prob. 71PQCh. 38 - Prob. 72PQCh. 38 - Prob. 73PQCh. 38 - Prob. 74PQCh. 38 - An object 2.50 cm tall is 15.0 cm in front of a...Ch. 38 - Figure P38.76 shows an object placed a distance...Ch. 38 - Prob. 77PQCh. 38 - Prob. 78PQCh. 38 - Prob. 79PQCh. 38 - CASE STUDY A group of students is given two...Ch. 38 - A group of students is given two converging...Ch. 38 - Prob. 82PQCh. 38 - Two lenses are placed along the x axis, with a...Ch. 38 - Prob. 84PQCh. 38 - Prob. 85PQCh. 38 - Prob. 86PQCh. 38 - Prob. 87PQCh. 38 - Prob. 88PQCh. 38 - Prob. 89PQCh. 38 - Prob. 90PQCh. 38 - Prob. 91PQCh. 38 - Prob. 92PQCh. 38 - Prob. 93PQCh. 38 - Prob. 94PQCh. 38 - Prob. 95PQCh. 38 - Prob. 96PQCh. 38 - Prob. 97PQCh. 38 - A Fermats principle of least time for refraction....Ch. 38 - Prob. 99PQCh. 38 - Prob. 100PQCh. 38 - Prob. 101PQCh. 38 - Prob. 102PQCh. 38 - Prob. 103PQCh. 38 - Prob. 104PQCh. 38 - Curved glassair interfaces like those observed in...Ch. 38 - Prob. 106PQCh. 38 - Prob. 107PQCh. 38 - Prob. 108PQCh. 38 - Prob. 109PQCh. 38 - Prob. 110PQCh. 38 - Prob. 111PQCh. 38 - Prob. 112PQCh. 38 - Prob. 113PQCh. 38 - Prob. 114PQCh. 38 - The magnification of an upright image that is 34.0...Ch. 38 - Prob. 116PQCh. 38 - Prob. 117PQCh. 38 - Prob. 118PQCh. 38 - Prob. 119PQCh. 38 - Prob. 120PQCh. 38 - Prob. 121PQCh. 38 - Prob. 122PQCh. 38 - Prob. 123PQCh. 38 - Prob. 124PQCh. 38 - Prob. 125PQCh. 38 - Prob. 126PQCh. 38 - Light enters a prism of crown glass and refracts...Ch. 38 - Prob. 128PQCh. 38 - An object is placed a distance of 10.0 cm to the...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY