EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.8, Problem 8P
A househusband is cooking beef stew for his family in a pan that is (a) uncovered, (b) covered with a light lid, and (c) covered with a heavy lid. For which case will the cooking time be the shortest? Why?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A closed, expandable system like that shown below is operated in an adiabatic manner.
First, 15,000 lb;ft of work are done by this system. Then, work is applied to the stirring
device to raise the internal energy of the fluid by 10.28 Btu. 1) Calculate the net increase
in the internal energy of this system, and 2) explain how you could calculate the change in
temperature of the system.
00
2019 McGraw-Hill Education
A weighted piston (total masa of 17 kg)., resting on stops in a cylnder (radius of 0.05 m) divides a container into two regions. 0.075 kg of saturated liquid water at 50 Cis contained
beneath the piston. The rest of the cylinder and container is evacuated. Heat is applied to the water until the piston is lifted off of the stops and moved a distance () of 0.6 m.
As the piston reaches the mouth of the cylinder, the hermetic seal is broken and the cylinder contents can now expand to fil the remainder of the evacuated space. At this instant,
no additional heat is added to or removed from the system. When the system fully equilibrates, its absolute pressure is measured to be 0.01 MPa
vacuum
y
-E Cre 20
What is the state of the water when the piston begins to rise off of the stops? ?
bị What is the water temperature when the piston reaches the mouth of the cylinder?
c) What is the final volume of the water (after the seal is brokenj?
During processing in a steel mill, a 900 lb steel casting at 800°F is quenched by plunging it into a 550 gal oil bath, which is initially at a temperature of 100°F. After the casting cools and the oil bath warms, what is the final temperature of the two? The weight per unit volume of the oil is
7.5 lb/gal.
(Express your answer using four significant figures.)
T
F
Chapter 3 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 3.8 - Is iced water a pure substance? Why?Ch. 3.8 - What is the difference between saturated vapor and...Ch. 3.8 - 3–3C Is there any difference between the...Ch. 3.8 - 3–4C Why are the temperature and pressure...Ch. 3.8 - Is it true that water boils at higher temperature...Ch. 3.8 - What is the difference between the critical point...Ch. 3.8 -
3–7C Is it possible to have water vapor at ?
Ch. 3.8 - A househusband is cooking beef stew for his family...Ch. 3.8 - In what kind of pot will a given volume of water...Ch. 3.8 - It is well known that warm air in a cooler...
Ch. 3.8 - Does the amount of heat absorbed as 1 kg of...Ch. 3.8 - Does the reference point selected for the...Ch. 3.8 - What is the physical significance of hfg? Can it...Ch. 3.8 - Does hfg change with pressure? How?Ch. 3.8 - Is it true that it takes more energy to vaporize 1...Ch. 3.8 - What is quality? Does it have any meaning in the...Ch. 3.8 - Which process requires more energy: completely...Ch. 3.8 - In the absence of compressed liquid tables, how is...Ch. 3.8 - Prob. 19PCh. 3.8 - Complete this table for H2O:Ch. 3.8 - Prob. 21PCh. 3.8 - Complete this table for H2O:Ch. 3.8 - Complete this table for H2O:Ch. 3.8 - Prob. 26PCh. 3.8 - Complete this table for refrigerant-134a:Ch. 3.8 - A 1.8-m3 rigid tank contains steam at 220C....Ch. 3.8 - A pistoncylinder device contains 0.85 kg of...Ch. 3.8 - Prob. 30PCh. 3.8 -
3–31 10-kg of R-134a fill a 1.348-m3 rigid...Ch. 3.8 - Prob. 32PCh. 3.8 - Refrigerant-134a at 200 kPa and 25C flows through...Ch. 3.8 - Prob. 34PCh. 3.8 - The temperature in a pressure cooker during...Ch. 3.8 - Prob. 36PCh. 3.8 -
3–37E One pound-mass of water fills a 2.4264-ft3...Ch. 3.8 - Prob. 38PCh. 3.8 - Water is to be boiled at sea level in a...Ch. 3.8 - Repeat Prob. 340 for a location at an elevation of...Ch. 3.8 - 10 kg of R-134a at 300 kPa fills a rigid container...Ch. 3.8 - 100 kg of R-134a at 200 kPa are contained in a...Ch. 3.8 - Water initially at 200 kPa and 300C is contained...Ch. 3.8 -
3–44 Saturated steam coming off the turbine of a...Ch. 3.8 - Prob. 45PCh. 3.8 - Prob. 46PCh. 3.8 - Water is being heated in a vertical pistoncylinder...Ch. 3.8 - Prob. 49PCh. 3.8 - A rigid tank with a volume of 1.8 m3 contains 40...Ch. 3.8 - A pistoncylinder device contains 0.005 m3 of...Ch. 3.8 -
3–53E A 5-ft3 rigid tank contains 5 lbm of water...Ch. 3.8 - A 5-ft3 rigid tank contains a saturated mixture of...Ch. 3.8 - Superheated water vapor at 180 psia and 500F is...Ch. 3.8 - Prob. 57PCh. 3.8 - 3–58 A rigid tank contains water vapor at 250°C...Ch. 3.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 3.8 - How much error would one expect in determining the...Ch. 3.8 - Prob. 61PCh. 3.8 -
3–62 A rigid vessel contains 8 kg of...Ch. 3.8 - A rigid tank initially contains 1.4 kg saturated...Ch. 3.8 - A pistoncylinder device initially contains 50 L of...Ch. 3.8 - Under what conditions is the ideal-gas assumption...Ch. 3.8 - Prob. 66PCh. 3.8 - Propane and methane are commonly used for heating...Ch. 3.8 - A 400-L rigid tank contains 5 kg of air at 25C....Ch. 3.8 - Prob. 69PCh. 3.8 - Prob. 70PCh. 3.8 - The pressure gage on a 2.5-m3 oxygen tank reads...Ch. 3.8 - A spherical balloon with a diameter of 9 m is...Ch. 3.8 - Reconsider Prob. 373. Using appropriate software,...Ch. 3.8 - Prob. 74PCh. 3.8 - Prob. 75PCh. 3.8 - A rigid tank whose volume is unknown is divided...Ch. 3.8 - Prob. 77PCh. 3.8 - Prob. 78PCh. 3.8 - Prob. 79PCh. 3.8 - Prob. 80PCh. 3.8 - Prob. 81PCh. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Determine the specific volume of superheated water...Ch. 3.8 - Prob. 85PCh. 3.8 - Prob. 86PCh. 3.8 - Prob. 87PCh. 3.8 - Prob. 88PCh. 3.8 - Prob. 89PCh. 3.8 - Prob. 90PCh. 3.8 - Carbon dioxide gas enters a pipe at 3 MPa and 500...Ch. 3.8 - A 0.016773-m3 tank contains 1 kg of...Ch. 3.8 - What is the physical significance of the two...Ch. 3.8 - A 3.27-m3 tank contains 100 kg of nitrogen at 175...Ch. 3.8 - Prob. 95PCh. 3.8 - Refrigerant-134a at 400 psia has a specific volume...Ch. 3.8 - Nitrogen at 150 K has a specific volume of...Ch. 3.8 - A 1-m3 tank contains 2.841 kg of steam at 0.6 MPa....Ch. 3.8 - Prob. 102PCh. 3.8 - Prob. 103PCh. 3.8 - On a certain day, the temperature and relative...Ch. 3.8 - Prob. 105PCh. 3.8 - Consider two rooms that are identical except that...Ch. 3.8 - A thermos bottle is half-filled with water and is...Ch. 3.8 - Prob. 108RPCh. 3.8 - The combustion in a gasoline engine may be...Ch. 3.8 - A tank contains argon at 600C and 200 kPa gage....Ch. 3.8 - Prob. 111RPCh. 3.8 - Prob. 112RPCh. 3.8 - A rigid tank with a volume of 0.117 m3 contains 1...Ch. 3.8 - Prob. 114RPCh. 3.8 - Ethane at 10 MPa and 100C is heated at constant...Ch. 3.8 - Prob. 116RPCh. 3.8 - A 10-kg mass of superheated refrigerant-134a at...Ch. 3.8 - A 4-L rigid tank contains 2 kg of saturated...Ch. 3.8 - The gage pressure of an automobile tire is...Ch. 3.8 - Prob. 120RPCh. 3.8 - Steam at 400C has a specific volume of 0.02 m3/kg....Ch. 3.8 - A tank whose volume is unknown is divided into two...Ch. 3.8 - Prob. 123RPCh. 3.8 - Prob. 124RPCh. 3.8 - Prob. 125RPCh. 3.8 - A tank contains helium at 37C and 140 kPa gage....Ch. 3.8 - Prob. 127RPCh. 3.8 - Prob. 131RPCh. 3.8 - Consider an 18-m-diameter hot-air balloon that,...Ch. 3.8 - Prob. 134FEPCh. 3.8 - Water is boiled at 1 atm pressure in a coffeemaker...Ch. 3.8 - Prob. 136FEPCh. 3.8 - Prob. 137FEPCh. 3.8 - Water is boiled in a pan on a stove at sea level....Ch. 3.8 - Prob. 139FEPCh. 3.8 - Consider a sealed can that is filled with...Ch. 3.8 - A rigid tank contains 2 kg of an ideal gas at 4...Ch. 3.8 - The pressure of an automobile tire is measured to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 169 g of solid water (i.e. ice), at -17 °C, is placed into a sealed, insulated container with a volume of 0.29 m^3. A 1457 W heater is used to heat and change the phase of the sample until it is a gaseous water (i.e. steam). The heater runs for 433 s. What is the pressure, in kPa, of the gaseous water in the container at the end of the heating process? Round your answer to the first decimal place.arrow_forwardA piston-cylinder assembly with a mass of 85 kg and a cross-sectional area of 0.05 m2, which can move freely without friction, is located in a place where the atmospheric pressure is 95 kPa. The initial volume of the piston is 9 liters and contains 0.007kg of air. Then, the volume is halved with the heat transfer from the piston-cylinder assembly to the environment. The ideal gas constant will be 0.287 kJ/kgK. According to this; a) The final pressure of the container. b) border work c) Calculate the amount of heat transfer to the environment (kj).arrow_forwardIn a kitchen there are two identical pots that have been previously heated, one of the pans is filled with 500ml of Water at 100◦C and the other with 500 no of oil at 130◦C. After that, there is more fire that continues to introduce heat to both liquids. In that instant, a person who had cut 300 g of potato into small cubes at a temperature of 25◦C, decides to pour half the amount of potato in boiling water and the other half in burning oil. Knowing that Water density is the 1.00 g / ml; the oil density = 0.87 g / ml; theSpecific heat of water = 4186 J/ kg ·◦C, is theOil specific heat = 2000 J/ kg ·◦C is thePotato specific heat = 5530 J /kg ·◦C (a) Determine the temperature of the thermal equilibrium between the potatoes in water, and the same portion in oil, considering each cases as isolated systems.arrow_forward
- I need the answer as soon as possiblearrow_forwardExplain using the concept of Ideal gas laws on how do you make a cold body, and how air conditioners and refrigerators work.arrow_forwardThe heat engine shown in the figure uses 2.0 mol of a monatomic gas as the working substance. (Figure 1) Figure p (kPa) 600 400 200 0 0 ہے۔ 0.025 0.050 -V (m³) 1 of 1 Part A Determine T₁, T2, and T3. Enter your answers numerically separated by commas. Express your answer using two significant figures. T₁, T₂, T3 = Submit Request Answer Part B 17 ΑΣΦ AEth: Ws, Q = Submit Determine AEth, Ws, and Q for 1-2. Enter your answers numerically separated by commas. Express your answer using two significant figures. [VD ΑΣΦ ? Request Answer K ? Jarrow_forward
- NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Oxygen is heated from 700 to 1000 R. Determine the enthalpy energy change Ah of oxygen, in Btu/lbm, using the cp value at the average temperature from the table. (You must provide an answer before moving on to the next part.) The enthalpy energy change of oxygen is 218 Btu/lbm.arrow_forwardOn a summer day in Phoenix, Arizona, the inside room temperature is maintained at 68° F while the outdoor air temperature is a sizzling 110° F . What is the outdoor– indoor temperature difference in (a) degrees Fahrenheit, (b) degrees Rankine, (c) degrees Celsius, and (d) kelvin? Is one degree temperature difference in Celsius equal to one temperature difference in kelvin, and is one degree temperature difference in Fahrenheit equal to one degree temperature difference in Rankine? If so, why?arrow_forward6. Ice at -20°C has been brought to an insulated container containing 2kg of commercial tungsten having an specific heat of 138J/kg-K and a temperature of 78°C. If equilibrium was attained at 25°C, determine the mass of the ice placed in the container. a. 30.3779grams b. 29.6058grams c. 31.1184grams d. 29.9868gramsarrow_forward
- What is a steady-flow process?arrow_forwardDetermine the heat extracted in cal/hr of a refrigerating plant which produces 11025lbsof ice in every two days at 23 ˚F from the raw water at 65 ˚F. If miscellaneous losses is¾% of the freezing and chilling load.arrow_forwardDraw the T-v (temperature versus specific volume) diagram for the heating processof water at constant pressure. Specify the compressed liquid, saturated liquid, saturated mixture,saturated vapor, and superheated vapor states on the diagram.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Thermodynamics: Maxwell relations proofs 1 (from ; Author: lseinjr1;https://www.youtube.com/watch?v=MNusZ2C3VFw;License: Standard Youtube License